353
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Homeobox C10 inhibits the osteogenic differentiation potential of mesenchymal stem cells

, , , , , , , , & show all
Pages 201-211 | Received 31 Dec 2016, Accepted 05 Jun 2017, Published online: 01 Aug 2017
 

ABSTRACT

Purpose: Mesenchymal stem cells (MSCs) are a reliable cell source for tissue regeneration. However, the molecular mechanisms underlying the directed differentiation of MSCs remain unclear which impedes potential clinical applications. Recent studies have discovered that Homeobox (HOX) genes are involved in the differentiation regulation of MSCs and bone formation. In this study, we investigate the HOXC10 function in the osteogenic differentiation potential of MSCs. Materials and Methods: Stem cells from apical papilla (SCAPs) and adipose-derived stem cells (ADSCs) were used in this study. Alkaline phosphatase (ALP) activity assays, ALP staining, Alizarin red staining, quantitative calcium analysis, osteogenesis-associated gene expression, and in vivo transplantation experiments were used to study osteogenic differentiation potential. Results: Our results showed that overexpression of HOXC10 in SCAPs inhibited ALP activity and mineralization in vitro and decreased the mRNA expression of collagen alpha-1 (I) chain, bone sialoprotein, osteocalcin, and a key transcription factor, runt-related transcription factor 2, in SCAPs. Depletion of HOXC10 promoted osteogenic differentiation in SCAPs in vitro. In addition, in vivo transplantation experiments in nude mice confirmed that SCAPs osteogenesis was triggered when HOXC10 was downregulated. Furthermore, depletion of HOXC10 also enhanced osteogenic differentiation in ADSCs. Conclusions: Taken together, these results indicated that HOXC10 decreased the MSC osteogenic differentiation potential. Thus, inhibition of HOXC10 in MSCs might have the potential to improve tissue regeneration and provide insight into the mechanism underlying the directed differentiation of MSCs.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the article.

Funding

This work was supported by grants from the National Natural Science Foundation of China (81625005 to Z.P.F.), Beijing Natural Science Foundation (7172089 to Z.P.F.), and Beijing Scholar Program (PXM2016_014226_000034, PXM2016_014226_000006, PXM2015_014226_000116, PXM2015_014226_000055, PXM2015_014226_000052).

Supplemental Material

Supplemental data for this article can be accessed on the publisher’s website.

Additional information

Funding

This work was supported by grants from the National Natural Science Foundation of China (81625005 to Z.P.F.), Beijing Natural Science Foundation (7172089 to Z.P.F.), and Beijing Scholar Program (PXM2016_014226_000034, PXM2016_014226_000006, PXM2015_014226_000116, PXM2015_014226_000055, PXM2015_014226_000052).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.