1,082
Views
22
CrossRef citations to date
0
Altmetric
Reviews

Mechanistic complexities of bone loss in Alzheimer’s disease: a review

, &
Pages 4-18 | Received 18 Jan 2019, Accepted 15 May 2019, Published online: 11 Jun 2019
 

ABSTRACT

Purpose/Aim: Alzheimer’s disease (AD), the primary cause of dementia in the elderly, is one of the leading age-related neurodegenerative diseases worldwide. While AD is notorious for destroying memory and cognition, dementia patients also experience greater incidence of bone loss and skeletal fracture than age-matched neurotypical individuals, greatly impacting their quality of life. Despite the significance of this comorbidity, there is no solid understanding of the mechanisms driving early bone loss in AD. Here, we review studies that have evaluated many of the obvious risk factors shared by dementia and osteoporosis, and illuminate emerging work investigating covert pathophysiological mechanisms shared between the disorders that may have potential as new risk biomarkers or therapeutic targets in AD.

Conclusions: Skeletal deficits emerge very early in clinical Alzheimer’s progression, and cannot be explained by coincident factors such as aging, female sex, mobility status, falls, or genetics. While research in this area is still in its infancy, studies implicate several potential mechanisms in disrupting skeletal homeostasis that include direct effects of amyloid-beta pathology on bone cells, neurofibrillary tau-induced damage to neural centers regulating skeletal remodeling, and/or systemic Wnt/Beta-catenin signaling deficits. Data from an increasing number of studies substantiate a role for the newly discovered “exercise hormone” irisin and its protein precursor FNDC5 in bone loss and AD-associated neurodegeneration. We conclude that the current status of research on bone loss in AD is insufficient and merits critical attention because this work could uncover novel diagnostic and therapeutic opportunities desperately needed to address AD.

Acknowledgments

The authors would like to thank Dr. Samuel Crish for editorial and conceptual review of this manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.