760
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

The potential for biological control of stoats (Mustela erminea)

Pages 145-163 | Received 16 Sep 1999, Accepted 20 Jan 2000, Published online: 30 Mar 2010
 

Abstract

Accelerating the mortality of stoats (Mustela erminea) using biological agents, or reducing their fertility using chemosterilants or biological agents, are increasingly seen as more sustainable and more humane than trapping and poisoning. Obligate delayed implantation in fertilised female stoats of all ages allows 10–11 months for an applied biological agent or chemosterilant to interfere with gestation. Two chemosterilants (cabergoline and mifepristone) disrupt pregnancy in some species and may be effective on stoats, although they are not species‐specific and are probably more expensive than poisoning. For the longer term, more recent fertility control research has explored potentially more species‐specific options for other species based on inducing an immune response to an animal's own reproductive hormones, gametes, or products from embryos. Conception will be difficult to disrupt in stoats because females are sexually mature and are mated in the nest during a short period before they are weaned. A large research effort will be required to determine which of the immunosterilants being developed could be suitable candidates for stoat control. There are fewer options apparent for using biological agents to increase stoat mortality, although species‐specific strains of canine distemper virus may be effective against stoats.

The greatest impediment to controlling stoat fertility will be effective delivery of sterilants. For the foreseeable future, it will probably be necessary to rely on baits, but they are unlikely to put all target stoats at risk, and will be incapable of delivery over larger scales than at present.

Before undertaking expensive field trials and development of anti‐fertility and biological agents, the effects of putative compensatory changes in demographics that may be associated with changes in stoat density should be modelled to see if the sterilisation and mortality rates that are required to achieve a given level of population control are realistic targets. Also, population control should be defined in terms of accrued benefit for wildlife by establishing the relationships between stoat densities and the viability of prey populations.

Biological control of fertility or mortality may never be suitable as stand‐alone control options for stoats, particularly when some native fauna survive only if stoats are reduced to very low densities. Biological control may have greater potential when integrated with conventional control.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.