166
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

A branch-and-bound algorithm for minimizing the sum of maximum earliness and tardiness with unequal release times

&
Pages 521-536 | Received 10 Aug 2008, Published online: 21 May 2009
 

Abstract

This article addresses the problem of minimizing the sum of maximum earliness and tardiness on a single machine with unequal release times. It is proven that this problem is NP-hard in the strong sense and a branch-and-bound algorithm is developed as an exact method. In the proposed algorithm, modified dispatching rules based on different release times are proposed as the upper bound, while a procedure considering preemption assumption is used to obtain a good lower bound. Also, dominance rules based on no unforced idle time, adjacent pairwise interchanges in the base problem, and job blocks are used to fathom the nodes. In order to evaluate the efficiency of the proposed algorithm, 4,860 instances were randomly generated, varying from 7 to 1,000 jobs. It is shown that the branch-and-bound algorithm was capable of optimally solving 94.1% of the instances, showing its efficiency in solving all problem sizes.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.