624
Views
37
CrossRef citations to date
0
Altmetric
Original Articles

A multi-objective genetic algorithm for the design of pressure swing adsorption

, &
Pages 833-854 | Published online: 03 Sep 2009
 

Abstract

Pressure Swing Adsorption (PSA) is a cyclic separation process, with advantages over other separation options for middle-scale processes. Automated tools for the design of PSA processes would be beneficial for the development of the technology, but their development is a difficult task due to the complexity of the simulation of PSA cycles and the computational effort needed to detect the performance in the cyclic steady state.

A preliminary investigation is presented of the performance of a custom multi-objective genetic algorithm (MOGA) for the optimization of a fast cycle PSA operation – the separation of air for N2 production. The simulation requires a detailed diffusion model, which involves coupled nonlinear partial differential and algebraic equations (PDAEs). The efficiency of MOGA to handle this complex problem has been assessed by comparison with direct search methods. An analysis of the effect of MOGA parameters on the performance is also presented.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.