152
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

DISCRETE MANUFACTURING PROCESS DESIGN OPTIMIZATION USING COMPUTER SIMULATION AND GENERALIZED HILL CLIMBING ALGORITHMS

, &
Pages 247-260 | Received 27 Jun 1997, Published online: 27 Apr 2007
 

Abstract

Discrete manufacturing process designs can be modelled using computer simulation. Determining optimal designs using such models is very difficult, due to the large number of manufacturing process sequences and associated parameter settings that exist. This has forced researchers to develop heuristic strategies to address such design problems. This paper introduces a new general heuristic strategy for discrete manufacturing process design optimization, called generalised hill climbing (GHC) algorithms. GHC algorithms provide a unifying approach for addressing such problems in particular, and intractable discrete optimization problems in general. Heuristic strategies such as simulated annealing, threshold accepting, Monte Carlo search, local search, and tabu search (among others) can all he formulated as GHC algorithms. Computational results are reported with various GHC algorithms applied to computer simulation models of discrete manufacturing process designs under study at the Materials Process Design Branch of Wright Laboratory, Wright Patterson Air Force Base (Dayton, Ohio, USA).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.