457
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Optimal lay-up design of variable stiffness laminated composite plates by a layer-wise optimization technique

Pages 205-217 | Received 13 Dec 2016, Accepted 11 Mar 2017, Published online: 12 Apr 2017
 

ABSTRACT

The optimal lay-up design for the maximum fundamental frequency of variable stiffness laminated composite plates is investigated using a layer-wise optimization technique. The design variables are two fibre orientation angles per ply. Thin plate theory is used in conjunction with a p-element to calculate the fundamental frequencies of symmetrically and antisymmetrically laminated composite plates. Comparisons with existing optimal solutions for constant stiffness symmetrically laminated composite plates show excellent agreement. It is observed that the maximum fundamental frequency can be increased considerably using variable stiffness design as compared to constant stiffness design. In addition, optimal lay-ups for the maximum fundamental frequency of variable stiffness symmetrically and antisymmetrically laminated composite plates with different aspect ratios and various combinations of free, simply supported and clamped edge conditions are presented. These should prove a useful benchmark for optimal lay-ups of variable stiffness laminated composite plates.

Disclosure statement

No potential conflict of interest was reported by the author.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.