228
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Damping design of harmonically excited flexible structures with graded materials to minimize sound pressure and radiation

ORCID Icon, ORCID Icon & ORCID Icon
Pages 348-367 | Received 12 Aug 2019, Accepted 24 Feb 2020, Published online: 16 Mar 2020
 

Abstract

Topology optimization is an effective method in the design of acoustic media. This article presents optimization for graded damping materials to minimize sound pressure at a reference point or sound power radiation under harmonic excitation. The Helmholtz integral equation is used to calculate an acoustic field to satisfy the Sommerfeld conditions. The equation of motion is solved using a unit dynamic load method. Formulations for the sound pressure or sound power radiation in an integral form are derived in terms of mutual kinetic and strain energy densities. These integrals lead to novel physical response functions for solving the proposed optimization problem to design graded damping materials. The response function derived for individual frequency is utilized to solve the multi-objective optimization problem of minimizing sound pressure at the reference point for excitations with a range of frequencies. Numerical examples are presented to verify the efficiency of the present formulations.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.