1,688
Views
37
CrossRef citations to date
0
Altmetric
Articles

Framing students’ progression in understanding matter: a review of previous research

, &
 

Abstract

This manuscript presents a systematic review of the research on how students conceptualise matter. Understanding the structure and properties of matter is an essential part of science literacy. Over the last decades the number of studies on students’ conceptions of matter published in peer-reviewed journals has increased significantly. These studies investigated how students conceptualise matter, to what extent students are able to explain everyday phenomena or how students develop an understanding of matter over time. In order to understand how students progress in their understanding of matter, what they understand easily and where they have difficulties, there is a need to identify common patterns across the available studies. The first substantial review of research on students’ conception was provided in the 1990s with the aim to organise students’ understanding of matter into four categories: students’ conceptions about (1) chemical reactions, (2) physical states and their changes, (3) atoms, molecules and particle systems and (4) conservation. The aim of this review and analysis is to identify how subsequent research on students’ conceptions of matter adds to this framework. The last comprehensive review of research on students’ understanding of matter was carried out in the early 2000s. Thus, we analysed studies on students’ conceptions of matter published within the last decade in five peer-reviewed journals of science education. Our findings suggest that research has moved from categorising students’ conceptions to analysing students’ progression in understanding matter. Based on our findings, we also identified typical pathways by which students may develop over time related to the four categories identified in previous reviews. As a conclusion, we present a model describing students’ progression in understanding matter which may contribute to the development of a K-12 learning progression of matter.

Acknowledgements

The research reported here was supported by the German Federal Ministry of Education and Research.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.