202
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Enzyme-assisted extraction of arsenic species from plant material

, &
Pages 629-640 | Received 07 Jun 2005, Accepted 04 Oct 2005, Published online: 25 Jan 2007
 

Abstract

Investigations regarding the transfer and metabolism of arsenic species in plants require mild extraction conditions to conserve the original composition of arsenic species. Beside the use of water or water/methanol for extraction of arsenic species from plant samples, enzymes can assist this procedure by digestion of cellulose and other constituents of cell walls, resulting in a faster, more efficient extraction technique which preserves the arsenic species. The investigations presented here were focused on the stability of certain arsenic species in enzymatic solutions, optimal conditions for their chromatographic separation and detection namely by means of ion chromatography–inductively coupled plasma mass spectrometry and improvements with respect to extraction efficiency. With commercially available enzymes and enzyme mixtures, the digestion rate of soluble starch as model cellulose was determined using high-performance anion exchange chromatography–pulsed amperometric detection analysis of glucose as the major digestion product. The most effective digestion rate (80% within 4 h) was obtained with Viscozyme®. This enzyme mixture was applied to extracted arsenic species from algae and terrestrial plant materials. Qualitative and quantitative differences in the results between enzyme-assisted and water extractions were obtained and discussed. The results show that the application of enzymes in mild extraction protocols should be evaluated as an additional step for the identification of As-metabolics in organisms. Careful selection of suitable enzyme mixtures can overcome the disadvantage that extraction efficiency is very organism-specific.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.