363
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Artificial Neural Networks in water analysis: Theory and applications

, &
Pages 85-105 | Received 02 Dec 2008, Accepted 03 Jun 2009, Published online: 27 Jan 2010
 

Abstract

Artificial Neural Networks (ANNs) have seen an explosion of interest over the last two decades and have been successfully applied in all fields of chemistry and particularly in analytical chemistry. Inspired from biological systems and originated from the perceptron, i.e. a program unit that learns concepts, ANNs are capable of gradual learning over time and modelling extremely complex functions. In addition to the traditional multivariate chemometric techniques, ANNs are often applied for prediction, clustering, classification, modelling of a property, process control, procedural optimisation and/or regression of the obtained data. This paper aims at presenting the most common network architectures such as Multi-layer Perceptrons (MLPs), Radial Basis Function (RBF) and Kohonen's self-organisations maps (SOM). Moreover, back-propagation (BP), the most widespread algorithm used today and its modifications, such as quick-propagation (QP) and Delta-bar-Delta, are also discussed. All architectures correlate input variables to output variables through non-linear, weighted, parameterised functions, called neurons. In addition, various training algorithms have been developed in order to minimise the prediction error made by the network. The applications of ANNs in water analysis and water quality assessment are also reviewed. Most of the ANNs works are focused on modelling and parameters prediction. In the case of water quality assessment, extended predictive models are constructed and optimised, while variables correlation and significance is usually estimated in the framework of the predictive or classifier models. On the contrary, ANNs models are not frequently used for clustering/classification purposes, although they seem to be an effective tool. ANNs proved to be a powerful, yet often complementary, tool for water quality assessment, prediction and classification.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.