210
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Excretion patterns of arsenic and its metabolites in human saliva and urine after ingestion of Chinese seaweed

, , , , , , , , & show all
Pages 379-389 | Received 11 Jun 2014, Accepted 24 Mar 2015, Published online: 29 Apr 2015
 

Abstract

There are no reports in scientific literature on arsenic species in human saliva after seaweed exposure. The present article reports for the first time the regular excretion patterns of arsenic in the saliva of volunteers with one-time ingestion of Chinese seaweed. Total arsenic and speciation analyses were carried out by high-performance liquid chromatography–inductively coupled plasma–mass spectrometry (HPLC-ICP-MS). Results show that the excretion time of total arsenic in saliva is a trifle earlier than that in urine, total arsenic in human saliva also shows a regular excretion pattern like that in urine within 72 h after exposure to seaweed. For speciation analysis, four species, including the major dimethylarsinic acid (DMA) species, were detected in urine prior to seaweed intake. Six species were detected in urine after seaweed ingestion, including DMA, methylarsonic acid (MMA), oxo-dimethylarsinoylethanol (oxo-DMAE), thio-dimethlyarsenoacetate (thio-DMAA), arsenite (AsIII) and arsenate (AsV). In saliva samples, three species were found before seaweed ingestion, with the major peak identified as AsIII. After consumption, the kinds of arsenic metabolites in saliva were less than those in urine. The major species was inorganic arsenic (iAs AsIII+AsV), followed by DMA, MMA and a trace amount of oxo-DMAE. Taken together, the present study suggests that saliva assay can be used as a potential tool for understanding the regular excretion pattern of total arsenic after seaweed ingestion. Whether or not it’s an efficient tool for assessing arsenic metabolites in humans exposed to seaweed requires further investigation.

Additional information

Funding

This work was supported in part by the Research Fund for the Doctoral Program of Higher Education of China (RFDP) [20123201110012]; Grant-in-Aid for Scientific Research (C) [26460176] from the Ministry of Education Culture, Sports, Science, and Technology of Japan; the Graduate innovation project of Jiangsu Province [ZY32007613]; the Pre-Research of National Natural Science Foundation of China (NSFC) research grant [Q3126982]; the Projects of key International Cooperation and Exchanges NSFC [81020108028]; and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.