293
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Synthetic DNA molecules in biosensing of biofilms

ORCID Icon & ORCID Icon
Pages 378-382 | Received 12 Sep 2019, Accepted 07 Oct 2019, Published online: 21 Oct 2019
 

ABSTRACT

Biofilms on medical devices such as implants and catheters are one of the most urgent threats in clinic because of causing increased antimicrobial resistance. Indirect detection methods such as end-point staining methods with crystal violet in tubes or microtiter well plates for screening attached bacteria on the surfaces target to extracellular polysaccharides. These methods are simple; however, there are some limitations. First, they can only be used after the formation of the biofilms, meaning there is no chance to continue the study with the same biofilms after staining. Second, they are semi-quantitative methods and the dyes are non-specifically bound to materials and so, sensitivity and reproducibility are low. In this study, a new, rapid, quantitative, nuclease-based fluorescence method was developed for detection of the formation of biofilm. In comparison with control which is nuclease-negative bacteria, biofilms produced by S. aureus had 31 times more signal. Additionally, biofilm formed by S. aureus in media not-including H2O2 had 14 times more signal than ones with H2O2.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.