308
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

A new disposable amperometric NADH sensor based on screen-printed electrode modified with reduced graphene oxide/polyneutral red/gold nanoparticle

ORCID Icon, ORCID Icon & ORCID Icon
Pages 419-431 | Received 15 Sep 2019, Accepted 06 Dec 2019, Published online: 20 Dec 2019
 

ABSTRACT

A new amperometric NADH sensor was developed based on screen-printed electrode (SPCE) modified with reduced graphene oxide (RGO), polyneutral red (PNR) and gold nanoparticles (AuNP). Electrochemical behaviour of NADH on SPCE/RGO/PNR/AuNP was investigated. The prepared sensor showed a high electrocatalytic effect on the oxidation of NADH. The sensor response for NADH was investigated as a function of pH and working potential. Optimum values of these parameters in the NADH determination were found as 7.0 for pH and +0.15 V for working potential. Sensitivity, linear range, limit of detection and limit of quantification of the sensor were found to be 8.72 μAmM−1, 5 to 3170 μM, 0.384 μM and 1.18 μM, respectively. The relative standard deviation (RSD) was calculated to be 1.93% (for n = 10). The operational stability studies have shown that the initial amperometric response of sensor to NADH decreased by 56.15% at the 60th day. Storage life studies have shown that the sensitivity of the biosensor decreased by 48.72% at the end of 12 weeks. The developed sensor has been tested for NADH determination in the human serum sample. The developed NADH sensor is promising to be used for NADH analysis in human serum samples as simple, practical and disposable device without requiring laborious sample pre-treatment producers.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.