131
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Crude oil and pyrene degradation by halotolerant fungi Embellisia sp. KJ59 and Alternaria sp. KJ66 isolated from saline soils

, ORCID Icon &
Pages 5453-5464 | Received 22 Mar 2021, Accepted 29 May 2021, Published online: 14 Jun 2021
 

ABSTRACT

In recent years, investigating halophilic and halotolerant fungi enzymes has confirmed their significant potential in the biodegradation of crude oil. The aim of the current study was to evaluate the biodegradation of crude oil by halotolerant fungal Embellisia sp. KJ59 and Alternaria sp. KJ66. The fungal strains were isolated on Czapek Dox Agar (CDA), potato dextrose agar (PDA), and malt extract agar (MEA) containing 10% NaCl. Seven strains that could grow in salinity, ranging from 0 to 17% were selected. Out of the seven isolates, isolates KJ59 and KJ66 were selected as superior strains because they were more efficient in the biodegradation of crude oil on Minimal Salt Medium containing 1% crude oil and different salinity. The isolates were identified as Embellisia sp. and Alternaria sp. based on its nucleotide sequence of internal transcribed spacer gene. They could biodegrade petroleum, ranging from 81.3 to 95.1% in NaCl concentrations of 0, 2.5, and 5% on PDB over a period of 14 days. Pyrene removal by these strains was over 88.3% in saline and non-saline MSM containing 100 mg L−1 pyrene. Finally, Embellisia sp. KJ59 and Alternaria KJ66 were introduced fungal strains for crude oil biodegradation as the sole or supplementary carbon source in the presence of different salt concentrations. Furthermore, they are potential fungal strains for bioremediation of crude oil in non-saline and contaminated saline environments.

Acknowledgments

The authors thank the University of Tehran for partial financial support for accomplishing the present research under Grant No. 06/63211265/K.

Disclosure of potential conflicts of interest

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed here

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.