139
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Optimisation of a photocatalytic water treatment using response surface methodology and quality by design Approach

, , , , , , , & show all
Pages 9466-9482 | Received 16 Sep 2021, Accepted 17 Nov 2021, Published online: 05 Jan 2022
 

ABSTRACT

Many water treatment methods have been developed to remove organic pollutants from contaminated waters. Their efficiency is usually assessed by removal measurements, and the effect of operational factors on the process is rarely explored. To bridge this gap, an experimental design methodology has been applied to optimise an advanced oxidation process combining adsorption and photocatalysis, using AZURAD® software. This approach was applied to the removal of carbamazepine (CBZ) in aqueous solution by a bio-sourced activated carbon and TiO2 composite material under light exposure. Two experimental designs were performed considering three quantitative factors (pH, catalyst dose and temperature) and one qualitative factor (dissolved oxygen concentration). From the response surface methodology (RSM), the optimised operational factors for CBZ adsorption and degradation were independently determined. Using desirability function approach, commonly optimised conditions for both processes were assessed with a catalyst dose of 0.13 g.L−1, oxygen saturated medium and either pH = 9.5 and T = 40°C or pH = 7.8 and T = 10°C. The Quality by Design approach showed that the experimental conditions could vary maintaining the adsorption and photocatalysis process removal efficiency (with more than 70% and 80%, respectively) with a high probability of 80%. This highlights the robustness of the treatment process and its potential upscaling.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed here

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.