119
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Adsorptive features of cesium and strontium ions on zirconium tin(IV) phosphate nanocomposite from aqueous solutions

, &
Pages 103-122 | Received 08 Oct 2021, Accepted 26 Nov 2021, Published online: 03 Jan 2022
 

ABSTRACT

In this study, the sorption of Cs(I) and Sr(II) onto zirconium tin(IV) phosphate (ZrSnP) nanocomposite was achieved using the batch technique. ZrSnP has been prepared by the sol–gel technique and characterised using different analytical tools such as FT-IR, XRF, XRD, TGA & DTA, SEM, and TEM. The data obtained from this study showed that the sorption process was a fast equilibrium time (120 min). The distribution coefficients have sequence order; Cs(I) ˃ Sr(II). Reaction kinetic obeys the pseudo-second-order model. The capacity has the values 50.0, and 29.8 mg/g for Cs(I) and Sr(II), respectively. Sorption isotherms are more relevant to a Langmuir isotherm. Negative Gibbs energy values proved that the sorption process was spontaneous with high feasibility. Positive enthalpy values reveal that this process was endothermic. Positive entropy values showed that disorder between the solid–liquid phase increased during adsorption. The real sample study reveals that ZrSnP is a promising sorbent for the removal of 134Cs and 85Sr from low-level radioactive waste. The investigation proved that the ZrSnP is suitable for the removal of Cs(I) and Sr(II) from radioactive waste and could be considered potential material for purification of effluent polluted with these ions.

Acknowledgments

Great thanks to all members of the nuclear chemistry department, Egyptian Atomic Energy Authority for supporting this work.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.