428
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

The homeostat as embodiment of adaptive control

Pages 139-154 | Received 13 Feb 2008, Accepted 30 Sep 2008, Published online: 30 Jan 2009
 

Abstract

W. Ross Ashby was a founder of both cybernetics and general systems theory. His systems theory outlined the operational structure of models and observers, while his cybernetics outlined the functional architecture of adaptive systems. His homeostat demonstrated how an adaptive control system, equipped with a sufficiently complex repertoire of possible alternative structures, could maintain stability in the face of highly varied and challenging environmental perturbations. The device illustrates his ‘law of requisite variety’, i.e. that a controller needs at least as many internal states as those in the system being controlled. The homeostat provided an early example of how an adaptive control system might be ill-defined vis-à-vis its designer, nevertheless solve complex problems. Ashby ran into insurmountable difficulties when he attempted to scale up the homeostat, and consequently never achieved the general purpose, brainlike devices that he had initially sought. Nonetheless, the homeostat continues to offer useful insights as to how the large analogue, adaptive networks in biological brains might achieve stability.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.