97
Views
1
CrossRef citations to date
0
Altmetric
Articles

Prediction of membrane protein types using maximum variance projection

&
Pages 427-438 | Received 06 Feb 2009, Accepted 12 Apr 2009, Published online: 10 Mar 2011
 

Abstract

Predicting membrane protein types has a positive influence on further biological function analysis. To quickly and efficiently annotate the type of an uncharacterized membrane protein is a challenge. In this work, a system based on maximum variance projection (MVP) is proposed to improve the prediction performance of membrane protein types. The feature extraction step is based on a hybridization representation approach by fusing Position-Specific Score Matrix composition. The protein sequences are quantized in a high-dimensional space using this representation strategy. Some problems will be brought when analysing these high-dimensional feature vectors such as high computing time and high classifier complexity. To solve this issue, MVP, a novel dimensionality reduction algorithm is introduced by extracting the essential features from the high-dimensional feature space. Then, a K-nearest neighbour classifier is employed to identify the types of membrane proteins based on their reduced low-dimensional features. As a result, the jackknife and independent dataset test success rates of this model reach 86.1 and 88.4%, respectively, and suggest that the proposed approach is very promising for predicting membrane proteins types.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 60704047 and 60805001) and sponsored by Shanghai Pujiang Programme.

Notes

Additional information

Notes on contributors

Jie Yang

1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.