35
Views
26
CrossRef citations to date
0
Altmetric
Original Article

Homomorphic wavelet thresholding technique for denoising medical ultrasound images

, &
Pages 208-214 | Published online: 04 Aug 2009
 

Abstract

A novel homomorphic wavelet thresholding technique for reducing speckle noise in medical ultrasound images is presented. First, we show that the speckle wavelet coefficients in the logarithmically transformed ultrasound images are best described by the Nakagami family of distributions. By exploiting this speckle model and the Laplacian signal prior, a closed form, data-driven, and spatially adaptive threshold is derived in the Bayesian framework. The spatial adaptivity allows the additional information of the image (such as identification of homogeneous or heterogeneous regions) to be incorporated into the algorithm. Further, the threshold has been extended to the redundant wavelet representation, which yields better results than the decimated wavelet transform. Experimental results demonstrate the improved performance of the proposed method over other well-known speckle reduction filters. The application of the proposed method to a realistic US test image shows that the new technique, named HomoGenThresh, outperforms the best wavelet-based denoising method reported in [1] by more than 1.6 dB, Lee filter by 3.6 dB, Kaun filter by 3.1 dB and band-adaptive soft thresholding [2] by 2.1 dB at an input signal-to-noise ratio (SNR) of 13.6 dB.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.