21
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Micromachined oxygen gas sensors for microscopic energy consumption measurement systems

, , &
Pages 278-287 | Published online: 04 Aug 2009
 

Abstract

Although the indirect calorimeter is a useful tool, its size and expense mean that it is seldom used in hospitals. Furthermore, its flow-through measurement technique dilutes respiratory variations, so they can only be detected with some form of high-precision instrumentation. This study employs MEMS techniques to develop an oxygen sensor as one part of a microscopic energy consumption measurement system, which measures respiration dynamics in a real time manner. The oxygen sensor comprises a polysilicon resistor and a Li-doped (2 wt%) tin-oxide sensing film attached to a thermally isolated silicon-nitride membrane. The power consumption of the sensor is less than 25 mW at an operating temperature of 150°C. Furthermore, it measures oxygen concentrations between 25 and 85% with a linear output response. These characteristics render the proposed sensor suitable for use within a microscopic energy consumption measurement system in either hospital or homecare environments.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.