127
Views
24
CrossRef citations to date
0
Altmetric
Research Note

BP neural network classification for bleeding detection in wireless capsule endoscopy

, , &
Pages 575-581 | Published online: 15 Sep 2009
 

Abstract

Bleeding in the digestive tract is one of the most common gastrointestinal tract (GI) diseases, as well as the complication of some fatal diseases. Wireless capsule endoscopy (WCE) allows physicians to noninvasively examine the entire GI tract. However it is very laborious and time-consuming to inspect large numbers of WCE images, which limits the wider application of WCE. It is therefore important to develop an automatic and intelligent computer-aided bleeding detection technique. In this paper, a new method aimed at bleeding detection in WCE images is proposed. Colour texture features distinguishing the bleeding regions from non-bleeding regions are extracted in RGB and HSI colour spaces; then a neural network using the colour texture features as the feature vector inputs is designed to recognize the bleeding regions. The experiments demonstrate that the bleeding regions can be correctly recognized and clearly marked out. The sensitivity of the algorithm is 93% and the specificity is 96%.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.