1,315
Views
19
CrossRef citations to date
0
Altmetric
Innovation

Remote sensing of physiological signs using a machine vision system

ORCID Icon, ORCID Icon & ORCID Icon
Pages 396-405 | Received 04 Nov 2016, Accepted 27 Mar 2017, Published online: 27 Apr 2017
 

Abstract

The aim of this work is to remotely measure heart rate (HR) and respiratory rate (RR) using a video camera from long range (> 50 m). The proposed system is based on imperceptible signals produced from blood circulation, including skin colour variations and head motion. As these signals are not visible to the naked eye and to preserve the signal strength in the video, we used an improved video magnification technique to enhance these invisible signals and detect the physiological activity within the subject. The software of the proposed system was built in a graphic user interface (GUI) environment to easily select a magnification system to use (colour or motion magnification) and measure the physiological signs independently. The measurements were performed on a set of 10 healthy subjects equipped with a finger pulse oximeter and respiratory belt transducer that were used as reference methods. The experimental results were statistically analysed by using the Bland–Altman method, Pearson's correlation coefficient, Spearman correlation coefficient, mean absolute error, and root mean squared error. The proposed system achieved high correlation even in the presence of movement artefacts, different skin tones, lighting conditions and distance from the camera. With acceptable performance and low computational complexity, the proposed system is a suitable candidate for homecare applications, security applications and mobile health devices.

Disclosure statement

The authors of this manuscript have no conflict of interest relevant to this work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.