231
Views
40
CrossRef citations to date
0
Altmetric
Research Article

Epileptic seizure detection using DWT-based approximate entropy, Shannon entropy and support vector machine: a case study

, , &
Pages 1-8 | Received 28 Apr 2017, Accepted 16 Oct 2017, Published online: 18 Dec 2017
 

Abstract

In this work, we have used a time–frequency domain analysis method called discrete wavelet transform (DWT) technique. This method stand out compared to other proposed methods because of its algorithmic elegance and accuracy. A wavelet is a mathematical function based on time-frequency analysis in signal processing. It is useful particularly because it allows a weak signal to be recovered from a noisy signal without much distortion. A wavelet analysis works by analysing the image and converting it to mathematical function which is decoded by the receiver. Furthermore, we have used Shannon entropy and approximate entropy (ApEn) for extracting the complexities associated with electroencephalographic (EEG) signals. The ApEn is a suitable feature to characterise the EEGs because its value drops suddenly due to excessive synchronous discharge of neurons in the brain during epileptic activity in this study. EEG signals are decomposed into six EEG sub-bands namely D1–D5 and A5 using DWT technique. Non-linear features such as ApEn and Shannon entropy are calculated from these sub-bands and support vector machine classifiers are used for classification purpose. This scheme is tested using EEG data recorded from five healthy subjects and five epileptic patients during the inter-ictal and ictal periods. The data are acquired from University of Bonn, Germany. The proposed method is evaluated through 15 classification problems, and obtained high classification accuracy of 100% for two cases and it indicates the good classifying performance of the proposed method.

Disclosure statement

The authors declare that there is no conflict of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.