231
Views
8
CrossRef citations to date
0
Altmetric
Innovations

A 3D image segmentation for lung cancer using V.Net architecture based deep convolutional networks

, ORCID Icon & ORCID Icon
Pages 337-343 | Received 04 Oct 2020, Accepted 15 Mar 2021, Published online: 12 Apr 2021
 

Abstract

Lung segmentation of chest CT scan is utilised to identify lung cancer and this step is also critical in other diagnostic pathways. Therefore, powerful algorithms to accomplish this accurate segmentation task are highly needed in the medical imaging domain, where the tumours are required to be segmented with the lung parenchyma. Also, the lung parenchyma needs to be detached from the tumour regions that are often confused with the lung tissue. Recently, lung semantic segmentation is more suitable to allocate each pixel in the image to a predefined class based on fully convolutional networks (FCNs). In this paper, CT cancer scans from the Task06_Lung database were applied to FCN that was inspired by V.Net architecture for efficiently selecting a region of interest (ROI) using the 3D segmentation. This lung database is segregated into 64 training images and 32 testing images. The proposed system is generalised by three steps including data preprocessing, data augmentation and neural network based on the V-Net model. Then, it was evaluated by dice score coefficient (DSC) to calculate the ratio of the segmented image and the ground truth image. This proposed system outperformed other previous schemes for 3D lung segmentation with an average DCS of 80% for ROI and 98% for surrounding lung tissues. Moreover, this system demonstrated that 3D views of lung tumours in CT images precisely carried tumour estimation and robust lung segmentation.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.