298
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Diabetic foot thermal image segmentation using Double Encoder-ResUnet (DE-ResUnet)

ORCID Icon, ORCID Icon &
Pages 378-392 | Received 03 Sep 2021, Accepted 10 May 2022, Published online: 31 May 2022
 

Abstract

The use of thermography in the early diagnosis of Diabetic Foot (DF) has proven its effectiveness in identifying areas of the plantar foot that are susceptible to ulcer development. Segmentation of the foot sole is one of the most pertinent technical issues that must be performed with great precision. However, because of the inherent difficulties of foot thermal images, such as unclarity and the existence of ambiguities, segmentation approaches have not demonstrated sufficiently accurate and reliable results for clinical use. In this study, we aim to develop a fully automated, robust and accurate segmentation of the diabetic foot. To this end, we propose a deep neural network architecture adopting the encoder-decoder concept called Double Encoder-ResUnet (DE-ResUnet). This network combines the strengths of residual network and U-Net architecture. Moreover, it takes advantage of RGB (Red, Green, Blue) colour images and fuses thermal and colour information to improve segmentation accuracy. Our database consists of 398 pairs of thermal and RGB images. The population includes two groups. The first group of 54 healthy subjects. And a second group of 145 diabetic patients from the National Hospital Dos de Mayo in Peru. The dataset is splitted into 50% for training, 25% for validation and the last 25% is used for testing. This proposed model provided robust and accurate automatic segmentations of the DF and outperformed other state of the art methods with an average intersection over union (IoU) of 97%. In addition, it is able to accurately delineate the part of toes and heels which are high risk regions for ulceration.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Actions (grant agreement No #777661), aiming to develop smartphone applications for prevention and supervision of diabetic foot ulcers.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.