97
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Estimation of mechanical properties by transcatheter monitoring using local impedance and contact force

, , , , &
Pages 141-146 | Received 16 May 2022, Accepted 03 Oct 2022, Published online: 25 Nov 2022
 

Abstract

The mechanical properties of the myocardium in the left ventricle and right atrium were estimated by simultaneously measuring the local impedance (LI) and contact force (CF) using an ablation catheter. Radiofrequency catheter ablation (RFCA) is a well-established arrhythmia treatment. Monitoring the RF power, CF and properties of myocardium during RFCA are necessary to estimate the effect of ablation. Indices, such as CF, lesion size index and ablation index, do not include the myocardium mechanical properties. Therefore, there is the risk of side effects, such as cardiac tamponade, by excessive catheter indentation into vulnerable areas. We propose the simultaneous measurement of LI and CF for estimating the myocardial mechanical properties to reduce the side effects. In this study, an in vitro experimental system was constructed to measure LI and CF via the catheter. The relationship between the porcine myocardial tissue thickness and CF–LI curve was investigated using the left ventricle and right atrium. Power function coefficients approximating the CF–LI curve increased with thicker left ventricle. The thickness of the myocardium can be estimated by simultaneously measuring LI and CF. Intraoperative measurement of the myocardial mechanical properties can be used to determine the ablation conditions at each site.

Acknowledgement

The authors thank Yoshiki Tasaki, Masaya Mizokami, and Takahiro Nakayama for their help with this work. The authors thank Ashleigh Cooper, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.