17
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

On the evolution and stability of interfacial ripples on and off the critical frequency

Pages 143-171 | Received 21 Dec 1999, Accepted 15 Aug 2000, Published online: 20 Nov 2006
 

Abstract

Under consideration are interfaces between two media of different densities and which arise from the interaction between the Mth and Nth harmonics of the motion where 1 ≤ N < M. By means of the method of multiple scales in both space and time a pair of nonlinear coupled partial differential equations is derived which model the progression of the interface. The equations contain a detuning parameter [sgrave] which allow imperfections in the resonance to be taken into account. Stokes-type sinusoidal solutions to the equations were sought. It was found that solutions exist for all values of the interaction ratio M/N. In some situations interfaces exist at both exact and near resonance; while in others they are destroyed by amplifications in the detuning. In yet others, a quantity of detuning is actually necessary for the profiles to exist. In all cases, even when the parameters are fixed, a very large class of interface profiles is possible. Finally, the stability of the profiles is studied. It is found that some are quite stable, even to perturbations with wavenumbers close to the main flow.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.