6
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Flow of a stratified fluid bounded by walls of finite thermal conductance

Pages 109-121 | Received 11 Jan 1985, Accepted 03 Mar 1985, Published online: 01 Dec 2006
 

Abstract

A study is made of the behavior of a thermally stratified fluid in a container when the non-horizontal boundaries have finite thermal conductance. The theory of Rahm and Walin is briefly recounted. Numerical solutions to the Navier-Stokes equations for a Boussinesq fluid in a cylinder, adopting a Newtonian heat flux condition at the vertical sidewall, are presented. Results on the details of flow and temperature fields are given over ranges of the Rayleigh number Ra, the container aspect ratio H, and the sidewall conductance S. As S increases, the isotherms in the meridional plane are horizontal at small radii but they diverge at large radii. This creates temperature nonuniformilies in the horizontal direction, and convective motions result. The salient features of the interior temperature profiles are captured by the theoretical model. The velocity field is characterized by two oppositely-directed circulations. As Ra or S varies, the qualitative circulation patterns remain substantially unchanged, but the magnitudes of the convective flows differ by large amounts. The effects of the externally-imposed parameters on the flow and temperature structures are examined.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.