18
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Simulation of moist mountain waves with an anelastic model

&
Pages 259-276 | Received 21 Jun 1984, Accepted 04 Jan 1985, Published online: 01 Dec 2006
 

Abstract

A two-dimensional, nonlinear, time-dependent, non-hydrostatic, anelastic, numerical model is used to assess the effect of condensation on the evolution and structure of gravity waves generated by the passage of a stable, moist stream over topography. Precipation is ignored but water phase changes are taken into account explicitly.

The main effect of condensation is to damp the wave intensity and to reduce the wave drag, which can be diminished by as much as 50% compared to its value in dry simulations. This result agrees with some earlier analytical models and some more recent fully compressible numerical models.

This model also confirms that the presence of condensation delays the overturning of isentropes, and the formation of the critical layer that accompanies wave-breaking.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.