127
Views
8
CrossRef citations to date
0
Altmetric
Articles

New energy and helicity bounds for knotted and braided magnetic fields

Pages 385-402 | Received 10 Sep 2011, Accepted 29 Feb 2012, Published online: 17 May 2012
 

Abstract

In this article we present a review of some of the author's most recent results in topological magnetohydrodynamics (MHD), with an eye to possible applications to astrophysical flows and solar coronal structures. First, we briefly review basic work on magnetic helicity and linking numbers, and fundamental relations with magnetic energy and average crossing numbers of magnetic systems in ideal conditions. In the case of magnetic knots, we focus on the relation between their groundstate energy and topology, discussing the energy spectrum of tight knots in terms of ropelength. We compare this spectrum with the one given by considering the bending energy of such idealized knots, showing that curvature information provides a rather good indicator of magnetic energy contents. For loose knots far from equilibrium we show that inflexional states determine the transition to braid form. New lower bounds for tight knots and braids are then established. We conclude with results on energy-complexity relations for systems in presence of dissipation.

Acknowledgments

R.L.R. wishes to thank Francesca Maggioni for her help to produce the plots of figures and based on SONO data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.