199
Views
10
CrossRef citations to date
0
Altmetric
Articles

Life cycle of mesoscale eddies in the Gulf of Aden

ORCID Icon, , ORCID Icon, ORCID Icon, &
Pages 631-649 | Received 16 Oct 2019, Accepted 19 Dec 2019, Published online: 15 Jan 2020
 

Abstract

The Red Sea Water is a warm and salty water produced in the Red Sea by evaporation induced by strong solar radiation. This dense water mass exits the Red Sea through the Strait of Bab El Mandeb, and enters the Gulf of Aden as a density current between 400 and 1000 metre depth. In the Gulf of Aden, in situ and satellites observations have shown the impact of the deeply reaching eddies dominating the mesoscale dynamics, on the spreading of the Red Sea Water. In this paper, we study the life cycle of these mesoscale eddies in the Gulf of Aden by using a regional primitive equation model at mesoscale resolution, and an eddy-tracking algorithm. The mesoscale anticyclonic eddies are formed at the mouth of the Gulf of Aden, and subsequently drift westward into the gulf. Mesoscale anticyclones are long-lived compared to the cyclones. The cyclones result from the interaction of anticyclones with the coast and the sloping topography. The wind stress, the bathymetry and the surrounding eddy field drive the life cycle of eddies. Finally, Kelvin and internal waves are triggered along the northern and southern coasts.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.