37
Views
0
CrossRef citations to date
0
Altmetric
Articles

On the mother bodies of steady polygonal uniform vortices. Part I: numerical experiments

Pages 433-457 | Received 11 Jun 2022, Accepted 14 Oct 2022, Published online: 04 Nov 2022
 

ABSTRACT

The existence of an integral relation between self-induced velocity of a uniform, planar vortex and Schwarz function of its boundary opens the way to understand the kinematics of the vortex by analysing the internal singularities of that function. In general, they are branch cuts and form the so-called “mother body” of the vortex, because they generate the same external velocities of the vortex, by means of a relation identical to the Biot–Savart law for a vortex sheet. The jump of the Schwarz function across the cuts plays the role of the (complex) density of circulation. This paper investigates the singularities of polygonal vortices, which are highly nontrivial steady vortices widely present in Nature, and having fascinating properties, some of them still not well understood. By means of the equation of the dynamics of the Schwarz function specialised for steady vortices, a numerical tool based on elementary properties of the holomorphic functions is used for detecting the internal singularities and evaluating their strengths. In this way, it is shown that an nagonal vortex possesses n internal branch cuts. In a reference system having origin on the centre of vorticity of the vortex and real axis crossing one of its vertices, these cuts start from the origin and are directed along the n roots of the unity, so that they are aligned with the vertices. The positions of the branch points and the values assumed by the Schwarz function in these points are calculated by evaluating this function just outside the vortex boundary. Once the conditions on the branch points are defined, a power series representation of the Schwarz function is proposed, that is able to explain the behaviour of its real and imaginary parts in neighbourhoods of these points. Some conjectures about the external singularities are also discussed.

Acknowledgments

The author thanks prof. D.G. Dritschel for many enlightening discussions and for his helpful advice.

Disclosure statement

No potential conflict of interest was reported by the author.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.