101
Views
8
CrossRef citations to date
0
Altmetric
Articles

Mycosynthesis of nanosilver particles using extract of Alternaria alternata

, &
Pages 313-318 | Received 16 Jan 2014, Accepted 20 Jan 2014, Published online: 04 Mar 2014
 

Abstract

In the current investigation, we report the biosynthesis of silver nanoparticles (Ag NPs) employing extract of Alternaria alternata, which is an eco-friendly process for the synthesis of metallic nanoparticles. Ag NPs were synthesised through the reduction of aqueous Ag+ ion using the cell extract of fungus A. alternata in the dark conditions. The synthetic process was relatively fast and Ag NPs were formed within 24 h. UV–visible spectrum of the aqueous medium containing silver ion showed a peak at 435 nm corresponding to the plasmon absorbance of Ag NPs and another peak at 280 nm refers to tyrosine amino acid. The nanoparticles were characterised by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The morphology of nanoparticles is found to be spherical mostly, with ranging size of 27–79 nm; as revealed by SEM. The FTIR spectrum analysis indicated that biomolecules were involved in the synthesis of Ag NPs. The presence of the amino groups is expected to pack differently around the Ag NPs. This in turn will influence the self-assembly of nanoparticles on substrates as well as their stability. The present study demonstrates the possible use of biologically synthesised Ag NPs in the field of agriculture, when A. alternata could be used for simple, nonhazardous and efficient synthesis of Ag NPs.

Acknowledgement

We wish to express our gratitude to the Research Council of Bu-Ali Sina University, Hamedan, Iran; for providing financial support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.