Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 41, 2006 - Issue 6
91
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Behavior of Two Phenyl Urea Herbicides in Clayey Soils and Effect of Alternating Dry-Wet Conditions on their Availability

, , , , , & show all
Pages 883-893 | Published online: 06 Feb 2007
 

Adsorption and mobility of linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea) and diuron (3-(3,4-dichlorophenyl)-1, 1-dimethylurea) were studied in clayey soils from the Gharb area (Morocco). Soils A and B were planted with sun flower (Helianthus annuus) while soil C was planted with sugar cane (Saccharum offcinarum). Adsorption was studied for linuron in soils A and B, while mobility was studied only in soil B. Adsorption data were found to fit the Freundlich equation with correlation coefficients r2 > 0.9. Freundlich coefficients (Kf, nf) were in agreement with L and S isotherm types for soils A and B, respectively. Values of Koc (195 and 102) indicate moderate adsorption. Desorption isotherms for linuron showed hysteresis for both soils. The pesticide would be more bound to soil A (H = 8.44) than to soil B (H = 4.01). The effect of alternating wet and dry conditions was tested for soils A and B. Results showed that retention would increase in soil subject to an additional wet and dry cycle. In the case of diuron isotherm was of type L in soil C. Desorption was noticeable at high concentrations and tended to decrease when concentrations diminished. Mobility of linuron was tested in polyvinyle chloride (PVC) columns, which received different treatments before their percolation. The pesticide was more mobile in a previously saturated column. In columns subject to a drying step after saturation with water, linuron mobility was greatly reduced.

ACKNOWLEDGMENTS

Authors would like to thank North Atlantic Treaty Organization (Scientific Co-operation Programme) for funding this (grant CLG 978624) as well as the German DAAD for mobility of scientists to the German laboratory of Pr. Lennartz and Mr Zraouli (ORMVAG) for soil analysis.

Notes

1Sa/Silt/Clay—Sand/Silt/Clay; CEC—Cationic exchange capacity.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.