Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 48, 2013 - Issue 6
249
Views
22
CrossRef citations to date
0
Altmetric
ARTICLES

Evaluation of sorption-desorption processes for metalaxyl in natural and artificial soils

, , &
Pages 431-441 | Received 17 Sep 2012, Published online: 01 Mar 2013
 

Abstract

The main process controlling soil-pesticide interaction is the sorption-desorption as influenced by active soil surfaces. The sorption phenomena can influence translocation, volatility, persistence and bioactivity of a pesticide in soil. The present investigation was conducted on natural and artificial soils in order to enumerate the effect of soil components such as montmorillonite and ferrihydrite on the sorption behaviour of the fungicide metalaxyl and if sorption-desorption of the chiral pesticide affects the enantiomeric ratio. The sorption-desorption characteristics of metalaxyl were investigated by batch equilibration technique in a natural soil, two artificial soils, and in pure montmorillonite and ferrihydrite. After extraction, pesticide residues were analyzed by conventional and chiral chromatography using tandem mass spectrometry. A KdSorp (2.3–6.5) suggests low level sorption of metalaxyl with an appreciable risk of run-off and leaching. Thus, metalaxyl poses a threat to surface and ground water contamination. Furthermore, desorption tests revealed a hysteretic effect (H ≤ 0.8) in natural and artificial soils. Significant amount of metalaxyl was found tightly bound to the adsorbents without desorbing readily after desorption cycle. Desorption of 22–56% of the total amount of the retained metalaxyl was determined. This study reveals that an artificial soil derived from different soil constituents can be used to assess their influence on sorption/desorption processes. The present investigation showed that both montmorillonite and ferrihydrite play a significant role in the sorption of metalaxyl. The sorption doesn't influence the enantiomeric ratio of racemic metalaxyl.

Acknowledgments

This work has been performed within the framework of the research project SPP 1315 (Biogeochemical interfaces in soil), funded by German Science Foundation (DFG). We acknowledge the help rendered by Dr. Ingrid Kögel-Knabner and Dr. Katja Heister, TU-Munich for the preparation of the artificial soils and our colleague Mahadeo Halhalli for performing the surface analysis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.