Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 52, 2017 - Issue 7
160
Views
5
CrossRef citations to date
0
Altmetric
Articles

Investigation of the binding and simultaneous quantifications of propanil and bromoxynil herbicide concentrations in human serum albumin

, &
Pages 495-504 | Received 09 Dec 2015, Accepted 03 Feb 2017, Published online: 25 May 2017
 

ABSTRACT

This study reported the use of UV–visible and fluorescence spectroscopy and partial-least-square (PLS) multivariate regression for accurate and simultaneous quantifications of two widely used herbicides, propanil, 3′,4′-dichloropropionanilide (PPL) and bromoxynil, 3,5-dibromo-4-hydroxybenzonitrile (BXL) in human serum albumin (HSA) at physiological conditions. The binding affinity and thermodynamic properties of PPL-HSA and BXL-HSA complexes were also investigated. Partial-least-square (PLS) regression was used to collate the variability in the absorption or emission spectra of PPL-HSA and BXL-HSA complexes with PPL and/or BXL concentrations in HSA samples. The binding constants of 7.66× 108 M−1 for PPL-HSA and 4.88× 106 M−1 for BXL-HSA complexes were calculated at physiological conditions (temperature, 310 K; pH 7.4). Thermodynamic parameter values: enthalpy (ΔH) (13.99 kJ mol−1), entropy (ΔS) (0.078 kJ mol−1 K−1), and Gibbs free energy (ΔG) (−10.19 kJ mol−1) were determined for PPL-HSA complexation at physiological conditions. However, differences in thermodynamic property values of: ΔH (−214.3 kJ mol−1), ΔS (−0.563 kJ mol−1 K−1), and ΔG (−39.70 kJ mol−1) were observed for BXL–HSA complexes. The binding constants and negative ΔG values indicated strong binding affinity and thermodynamically favorability of PPL–HSA and BXL–HSA complex formation. Results of the PLS regression calibration showed good linearity (R2 ≥ 0.998289), high sensitivity, and impressive low limit-of-detections (LODs) of 1.38× 10−8 M for PPL and 1.68× 10−8 M for BXL that are comparable and/or lower than many previously reported LODs for herbicide and pesticide analyses. Most importantly, PLS regression is capable of simultaneous quantifications of PPL and BXL concentrations in HSA samples with good accuracy and low errors of 3.66%. UV–visible spectrophotometers and spectrofluorometers are fairly inexpensive, easy to use, and are readily available in almost every laboratory, making this protocol excellent and affordable for routine analysis of weed/pest control chemical residues in humans. The results of this study are significant and remarkable that will provide critical insight into the binding mechanism of herbicide toxicity in humans and non-target organisms, which are of special interest in the area of biomedical study, environmental risk assessment, and ecotoxicology.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.