Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 53, 2018 - Issue 10
128
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Optimized yeast-based in vitro bioassay for determination of estrogenic and androgenic activity of hydroxylated / methoxylated metabolites of BDEs / CBs and related lipophilic organic pollutants

, , , &
Pages 692-706 | Received 17 Feb 2018, Accepted 22 Apr 2018, Published online: 18 May 2018
 

ABSTRACT

Persistent organic pollutants (POPs) are known to show endocrine disrupting (ED) activity, including interactions with hormone receptors. The aim of this work was to develop a bioassay applicable for evaluation of ED potency of highly lipophilic metabolites of POPs. To that end, a yeast-based bio-assay protocol was used. Estrogenic / androgenic activity of some native brominated biphenyl ethers (BDEs) / chlorinated biphenyls (CBs), and their hydroxylated / methoxylated metabolites was assessed. Since data (including potency compared to reference native hormones) obtained using different protocols vary, the possibility that yeast transforms POPs into some more potent compounds was first checked; it seems that no such transformation is important from the test applicability standpoint. The developed method was sensitive with EC50 values 6.5*10−11 M and 4.5*10−9 M calculated for E2 and DHT, respectively. Both CBs and BDEs show weak estrogenic activity negatively correlated with the degree of their halogenation, but their metabolites are significantly more potent xenohormones. 4-OH-2,2′,4′,6′-TeCB was the most potent estrogen receptor (ER) agonist among all tested compounds; its activity was only 1,000 times lower than that of native E2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.