Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 54, 2019 - Issue 4
313
Views
20
CrossRef citations to date
0
Altmetric
Articles

Sorption of carbendazim and linuron from aqueous solutions with activated carbon produced from spent coffee grounds: Equilibrium, kinetic and thermodynamic approach

, &
 

Abstract

Spent coffee grounds (SCG) have been used for the production of activated carbon (AC) by impregnation with different ratios of phosphoric acid at 600 °C, Xp (H3PO4/coffee): 3:130%, 4:130%, 3:150% and 4:150%. The obtained AC was characterized by BET, FTIR and SEM. BET surface area corresponds to 803.422 m2 g−1. The influences of the main parameters such as contact time, the pesticides initial concentration, adsorbent dose, pH and temperature on the efficiency of separation process were investigated during the batch operational mode. Results were modeled by adsorption isotherms: Langmuir, Freundlich and Temkin isotherms, which gave satisfactory correlation coefficients. The maximum adsorption capacities calculated from the Langmuir isotherms were 11.918 mg g−1 for carbendazim and 5.834 mg g−1 for linuron at room temperature. Adsorption kinetics of carbendazim and linuron have been studied by the pseudo-first-order, the pseudo-second-order and the intraparticle diffusion model. The results of adsorption kinetics have been fitted the best by pseudo-second-order model. The resulted data from FTIR characterization pointed to the presence of many functional groups on the AC surface. SCG adsorbent, as an eco-friendly and low-cost material, showed high potential for the removal of carbendazim and linuron from aqueous solutions.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Authors would like to thank Ministry of Education, Science and Technological Development of the Republic of Serbia for financial support (Project No. III46009). Ali Mohammed Hgeig would like to thank the Ministry of Higher Education in Libya for his PhD grant supporting this research.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.