Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 56, 2021 - Issue 2
250
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Biotransformation of flonicamid and sulfoxaflor by multifunctional bacterium Ensifer meliloti CGMCC 7333

ORCID Icon, , , , &
 

Abstract

Flonicamid is a novel, selective, systemic pyridinecarboxamide insecticide that effectively controls hemipterous pests. Sulfoxaflor, a sulfoximine insecticide, effectively controls many sap-feeding insect pests. Ensifer meliloti CGMCC 7333 transforms flonicamid into N-(4-trifluoromethylnicotinoyl) glycinamide (TFNG-AM). Resting cells of E. meliloti CGMCC 7333 (optical density at 600 nm [OD600] = 5) transformed 67.20% of the flonicamid in a 200-mg/L solution within 96 h. E. meliloti CGMCC 7333 transforms sulfoxaflor into N-(methyl(oxido){1-[6-(trifluoromethyl) pyridin-3-yl] ethyl}-k4-sulfanylidene) urea (X11719474). E. meliloti CGMCC 7333 resting cells (OD600 = 5) transformed 89.36% of the sulfoxaflor in a 200 mg/L solution within 96 h. On inoculating 2 mL of E. meliloti CGMCC 7333 (OD600 = 10) into soil containing 80 mg/kg flonicamid, 91.1% of the flonicamid was transformed within 9 d (half-life 2.6 d). On inoculating 2 mL of E. meliloti CGMCC 7333 (OD600 = 10) into soil containing 80 mg/kg sulfoxaflor, 83.9% of the sulfoxaflor was transformed within 9 d (half-life 3.4 d). Recombinant Escherichia coli harboring the E. meliloti CGMCC 7333 nitrile hydratase (NHase)-encoding gene and NHase both showed the ability to transform flonicamid or sulfoxaflor into their corresponding amides, TFNG-AM and X11719474, respectively. These findings may help develop a bioremediation agent for the elimination of flonicamid and sulfoxaflor contamination.

Acknowledgment

We thank James Allen, DPhil, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Disclosure statement

The authors declare no competing financial interest.

Additional information

Funding

This research was financed by the National Natural Science Foundation of China (grant no. 31970094) and the Program for Jiangsu Excellent Scientific and Technological Innovation Team (17CXTD00014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.