1,490
Views
57
CrossRef citations to date
0
Altmetric
Review Article

Synthetic cathinone pharmacokinetics, analytical methods, and toxicological findings from human performance and postmortem cases

, &
Pages 237-265 | Received 24 Mar 2016, Accepted 06 May 2016, Published online: 01 Jun 2016
 

Abstract

Synthetic cathinones are commonly abused novel psychoactive substances (NPS). We present a comprehensive systematic review addressing in vitro and in vivo synthetic cathinone pharmacokinetics, analytical methods for detection and quantification in biological matrices, and toxicological findings from human performance and postmortem toxicology cases. Few preclinical administration studies examined synthetic cathinone pharmacokinetic profiles (absorption, distribution, metabolism, and excretion), and only one investigated metabolite pharmacokinetics. Synthetic cathinone metabolic profiling studies, primarily with human liver microsomes, elucidated metabolite structures and identified suitable biomarkers to extend detection windows beyond those provided by parent compounds. Generally, cathinone derivatives underwent ketone reduction, carbonylation of the pyrrolidine ring, and oxidative reactions, with phase II metabolites also detected. Reliable analytical methods are necessary for cathinone identification in biological matrices to document intake and link adverse events to specific compounds and concentrations. NPS analytical methods are constrained in their ability to detect new emerging synthetic cathinones due to limited commercially available reference standards and continuous development of new analogs. Immunoassay screening methods are especially affected, but also gas-chromatography and liquid-chromatography mass spectrometry confirmation methods. Non-targeted high-resolution-mass spectrometry screening methods are advantageous, as they allow for retrospective data analysis and easier addition of new synthetic cathinones to existing methods. Lack of controlled administration studies in humans complicate interpretation of synthetic cathinones in biological matrices, as dosing information is typically unknown. Furthermore, antemortem and postmortem concentrations often overlap and the presence of other psychoactive substances are typically found in combination with cathinones derivatives, further confounding result interpretation.

Acknowledgements

The authors would like to acknowledge Ms. Barbara Brandys, NIH Library, Bethesda, MD, for her invaluable assistance with the electronic literature search, Dr. Madeleine Swortwood for her contributions, and the University of Maryland, Baltimore, a member of the Graduate Partnership Program, NIH.

Disclosure statement

The authors report no declaration of interest.

Funding information

This work was supported by the Intramural Research Program, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.