684
Views
31
CrossRef citations to date
0
Altmetric
Review Article

Allosteric modulators of cannabinoid receptor 1: developing compounds for improved specificity

, , &
Pages 3-13 | Received 22 Nov 2017, Accepted 11 Jan 2018, Published online: 21 Jan 2018
 

Abstract

The cannabinoid receptor 1 (CB1) is a G protein-coupled receptor (GPCR) that is located primarily in the central nervous system. CB1 is a therapeutic target which may impact pathways to mediate pain, neurodegenerative disorders, hunger, and drug-seeking behavior. Despite these benefits, development of orthosteric therapeutic compounds, which target the endogenous ligand-binding site of CB1, has been challenging due to detrimental side effects including psychoactivity, depression, and suicidal thoughts. However, CB1 also has an allosteric binding site(s), which is topographically distinct from the orthosteric site. Allosteric modulation of CB1 has a number of potential advantages including providing a mechanism for more precise control of downstream pathways and circumventing these side effects. In this review, we summarize the concept of allosteric modulation and focus on the structure–activity relationship studies of the well-characterized allosteric modulators, ORG27569 and PSNCBAM-1 and their derivatives, and a few other recent modulators. We review studies on the properties of these modulators on CB1 signaling in cells and their effects in vivo. While many current allosteric modulators also produce complex outcomes, they provide new advances for the design of CB1 centered therapeutics.

Disclosure statement

The authors do not have a conflict of interest.

Additional information

Funding

This research was supported in part by NIH grant DA039942 (to D.A.K, A.H.L. and D.L.).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.