158
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Preparation and Characterization of Ethylene Vinyl Acetate (EVA)/Natural Rubber (SMR L)/Organoclay Nanocomposites: Effect of Blending Sequences and Organoclay Loading

, , &
Pages 752-761 | Published online: 24 Jul 2008
 

Abstract

Ethylene vinyl acetate (EVA)/natural rubber (SMR L)/organoclay thermoplastic elastomer nanocomposites were melt compounded in an internal mixer, Haake Rheometer, at 120°C and 50 rpm rotor speed. In this paper, we demonstrate the effect of different blending sequences and organoclay loading from 2 to 10 phr (parts per hundred resins) on the tensile properties, morphology, thermal degradation, flammability, and water absorption behavior of EVA/SMR L/organoclay nanocomposites. EVA/SMR L/organoclay TPE nanocomposites were prepared by three different blending sequences, and each exhibited different tensile properties. Results indicated that the presence of organoclay increases the tensile properties, resistance toward thermal degradation, resistance to water permeation, and flame retardancy for all the nanocomposites prepared via different blending sequences. However, the optimum results for all the properties studied were achieved when EVA was blended with organoclay first and SMR L was incorporated later into the blend. The optimum organoclay loading was achieved at 2 phr. Results from scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies showed that at 2 phr organoclay loading, nanostructures of individual silicate layers were achieved, whereas at 8 phr organoclay loading, agglomeration was observed. Flammability of the nanocomposites decreased when the organoclay loading increased.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.