169
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Fully-Coupled Numerical Analysis of High-Frequency Induction Heating for Thin-Wall Injection Molding

&
Pages 1070-1077 | Published online: 14 Sep 2009
 

Abstract

In recent years, rapid mold heating has served to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat metal parts by means of an electric current that flows through a conductive material by electromagnetic induction. The present study covers a numerical investigation of high-frequency induction heating of an injection mold in order to rapidly raise the mold temperature. To take into account the effects of thermal boundary conditions of induction heating, a fully coupled numerical analysis effectively connecting electromagnetic field calculation, heat transfer analysis, and injection molding simulation was carried out. The proposed integrated simulation was applied to the injection molding of a thin-wall part, and its results were compared with experimental findings in order to verify the validity of the proposed simulation.

ACKNOWLEDGMENTS

This research was financially supported by the Ministry of Knowledge Economy [MKE] and Korea Industrial Technology Foundation [KOTEF] through the Human Resource Training Project for Strategic Technology.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.