195
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Surface Modification on Mechanical and Tribological Performance of Poly-p-phenylenebenzobisoxazole Fiber-Reinforced Polyimide Composite

&
Pages 800-805 | Published online: 01 Jun 2012
 

Abstract

This work examined the effect of coupling agent surface modification of Poly-p-phenylenebenzobisoxazole (PBO) fibers on mechanical and tribological performance of PBO fiber-reinforced thermoplastic polyimide (PBO/PI) composites. The results show that tensile strength and flexural strength are largely improved by coupling agent treatment. Under dry sliding conditions, coupling agent treatment is effective to reduce the wear of PBO/PI composite. The principle of improvement in interfacial adhesion between PBO fiber and PI matrix after coupling agent treatment was discussed. The surface characteristics of PBO fibers were characterized by X-ray photoelectron spectroscopy (XPS). It is found that the content of polar groups on the surface of PBO fiber treated by coupling agent increases compared with the untreated fiber. The presence of polar groups is probably leading to an increment of interfacial binding force between fibers and matrix in a composite system, and accordingly enhances the mechanical and tribological properties.

ACKNOWLEDGMENTS

The authors would like to thank the help of the Instrumental Analysis Center, Shanghai Jiaotong University.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.