429
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Supercapacitor Behavior of Poly(Carbazole-EDOT) Derivatives/Multi-Walled Carbon Nanotubes, Characterizations and Equivalent Circuit Model Evaluations

, , &
 

Abstract

Three new different comonomers of carbazole-EDOT derivatives had been previously synthesized and characterized in detail. In this study, electroactive materials were electropolymerized onto multi-walled carbon nanotube (MWCNT) modified glassy carbon (GC) electrode in 0.1 M sodium dodecyl sulphate (SDS) solution. The electrochemical impedance spectroscopic results of Nyquist, and Bode-magnitude and Bode-phase plots show that polymers/MWCNT composites possess good capacitive characteristics. P(Com2)/MWCNT/GCE system's specific capacitance was up to Sc = 132.6 F g−1 at the scan rate of 70 mV s−1 from the area formula, Eq. (1). Furthermore, P(Com2)/MWCNT composite had very rapid charge/discharge ability with specific capacitance of Sc = 75.23 F g−1 at DC potential of 0.3 V from Nyquist plot, and Sc = 90.53 F g−1 at the scan rate of 60 mVs−1 from charge formula, Eq. (2), which is important practical advantage. In addition, such composite had a good cycling performance and a wide potential window. Long-term stability of the capacitor was also tested by CV, and the results indicated that, after 500 cycles, the specific capacitance was still at ∼100.0%, ∼89%, and ∼97.0% of the initial capacitance for P(Com1)/MWCNT, P(Com2)/MWCNT, and P(Com3)/MWCNT, respectively. An equivalent circuit model of Rs(C1(R1(Q(R2W))))(CGCRGC) was obtained to fit the experimental and theoretical data. Solution resistance (Rs) and resistance from GCE decrease gradually. However, capacitance of film (C1), constant phase element (Q), and n values increase for P(Com1), P(Com2), and P(Com3)/MWCNT, respectively. Therefore, more homogeneous and less rough surface composite film was obtained by addition of MWCNT in the composite material.

ACKNOWLEDGMENTS

The authors wish to thank Serhat Tıkız (Afyon Kocatepe Uni., TUAM, Afyon, Turkey) for recording SEM-EDX measurements. The authors also thank Yakup Bakis (BINATAM, Fatih University, Istanbul, Turkey) for recording AFM images.

Notes

Values range from −0.1 V to 0.4 V for P(Com1), P(Com2), and P(Com3)/MWCNT/GCE. ([Kom1]0 = 5 mM, 1.3 V, 300 s), ([Kom2]0 = 1 mM, 1.2 V, 100 s), and ([Kom3]0 = 2 mM, 1.3 V, 75 s). 0.3 V means the highest specific capacitances were obtained for nanocomposite film.

Values range from 5 mV s−1 to 100 mV s−1 for P(Com1), P(Com2), and P(Com3)/MWCNT/GCE. ([Kom1]0 = 5 mM, 1.3 V, 300 s), ([Kom2]0 = 1 mM, 1.2 V, 100 s), and ([Kom3]0 = 2 mM, 1.3 V, 75 s). 70 mV/s means the highest specific capacitances were obtained for nanocomposite films.

Values range from 5 mV s−1 to 100 mV s−1 for P(Com1), P(Com2), and P(Com3)/MWCNT/GCE. ([Kom1]0 = 5 mM, 1.3 V, 300 s), ([Kom2]0 = 1 mM, 1.2 V, 100 s), and ([Kom3]0 = 2 mM, 1.3 V, 75 s). 60 mV/s means the highest specific capacitances were obtained for nanocomposite films.

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lpte.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.