342
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hermite-Hadamard and Fejér-type inequalities for generalized η-convex stochastic processes

, &
Pages 5299-5310 | Received 30 Jan 2023, Accepted 22 May 2023, Published online: 05 Jun 2023

Abstract

In this article, we introduce the concept of (η1,η2)-convex stochastic processes on coordinates and establish Hermite-Hadamard-type inequality for these stochastic processes. Moreover, we prove new integral inequality of Hermite-Hadamard-Fejér type for newly defined coordinated η-convex stochastic processes on a rectangle. The results presented in this article would provide extensions of those given in earlier works.

Mathematics Subject Classification (2020):

1 Introduction

Convex sets and convex functions play an important role in applied mathematics, particularly in non linear programming and optimization theory. Many efforts have been made by researchers to generalize and extend the notion of convex functions. Gordji, Delavar, and Dragomir (Citation2015) introduced the idea of η-convex functions as generalization of convex functions and investigated Hermite-Hadamard (H-H), Fejér, Jensen, and Slater-type inequalities for these functions. Yaldi̇z, Sari̇kaya, and Dahmani (Citation2017) obtained new fractional H-H-Fejér-type integral inequalities for coordinated convex functions on a rectangle of R2. Further, Zaheer Ullah, Adil Khan, and Chu (Citation2019) defined the generalized class of convex functions named as coordinate (η1,η2)-convex function and established H-H inequality for the class of these functions. They showed that every η-convex function defined on a rectangle is coordinated η-convex but the converse is not true in general. For more details on generalization of convexity, we can see Alomari and Darus (Citation2009); Gordji, Delavar, and De La Sen (Citation2016); Sharma, Bisht, and Mishra (Citation2020); and Sharma et al. (Citation2019).

Over the past decades, the study of stochastic processes is rapidly expanding, with increasing applications in numerous scientific fields. This subject has received enormous support outside of mathematics from such diverse fields as physics, control theory, information theory, biology, signal processing, statistics, computer science, telecommunications, and cryptography (see Allen Citation2010; Bhattacharya and Waymire Citation2009; Sobczyk Citation2001 and their references). Nikodem (Citation1980) gave the concept of convex stochastic processes and showed that every measurable convex stochastic process is continuous. Further, many researchers investigated the properties of convex stochastic processes which generalize some known properties of convex functions (Skowroński Citation1992, Citation1995). Kotrys (Citation2012) extended the classical H-H inequality to convex stochastic process. Let X:K×ΩR be a Jensen-convex, mean square continuous in interval KR, then X(u+v2.)1vuuvX(x.)dxX(u.)+X(v.)2(a.e.),u,vK,which is H-H inequality for convex stochastic process.

Maden, Tomar, and Set (Citation2015) and Set, Tomar, and Maden (Citation2014) presented s-convex stochastic processes and investigated relation between s-convex stochastic processes and convex stochastic processes. In 2014, Barráez et al. (Citation2015) extended the class of h-convex functions to h-convex stochastic processs and presented Jensen-type inequality for these processes. Further, Set, Sari̇kaya, and Tomar (Citation2015) presented convex stochastic processes on coordinates and proved H-H-type inequalities for coordinated convex stochastic processes. Karahan, Nurgül, and İ can (Citation2018) considered convex stochastic processes on n-dimensional interval and dervied H-H-type inequality for convex stochastic processes on n-coordinates. For more results related to stochastic processes, we refer Fu et al. (Citation2021); Kotrys (Citation2015); Okur and Aliyev (Citation2021); Okur, Iscan, and Usta (Citation2018); Sharma, Mishra, and Hamdi (Citation2022a) and their references.

Recently, Jung et al. (2021) introduced the notion of η-convex stochastic processes and derived H-H and Jensen-type inequality for these type of stochastic processes. Sharma, Mishra, and Hamdi (Citation2022b) introduced the concept of strongly η-convex stochastic processes and proved the H-H and Ostrowski-type inequality for these generalized convex stochastic processes.

The above new developments in the field of stochastic convexity have inspired us to introduce a new class of convex stochastic processes named as (η1,η2)-convex stochastic processes on coordinates and obtained the generalization and extension of H-H-type inequality for these stochastic processes. Moreover, we derive H-H-Fejér-type inequality for coordinated η-convex stochastic processes. The results presented in this research article are the generalization and extension of earlier studies.

The presentation sequence of this article is as follows: Section 2 recall some basic definitions and results required for this paper. In Section 3, we define (η1,η2)-convex stochastic processes on coordinates and derive H-H inequality for these stochastic processes. We also obtain H-H-Fejér-type inequality for coordinated η-convex stochastic processes. Some special cases of our main results are also discussed in this section. In Section 4, conclusion of the proposed work is given.

2 Preliminaries

In this section, we collect some basic definitions and essential results required in the sequel of the paper.

Definition 1.

Let (Ω,A,P) be an arbitrary probability space. A function X:ΩR is called a random variable if it is A-measurable. A function X:K×ΩR, where KR is an interval, is a stochastic process if the function X(x) is a random variable for every xK.

Definition 2.

(Kotrys Citation2012). The stochastic process X:K×ΩR is called

  • continuous in probability in Kif Plimxx0X(x.)=X(x0.),x0K,where P-lim denotes the limit in probability;

  • mean square continuous in K, if limxx0E[(X(x.)X(x0.))2]=0,x0K,where E[X(x.)] denotes the expectation value of the random variable X(x.).

Definition 3.

(Kotrys Citation2012). Consider a stochastic process X:K × Ω  R with E[X(x)2] <  for all xK and [r1,s1]K. A random variable Y:K×ΩR is mean-square integral of the process X on [r1,s1], if for each normal sequence of partitions of the interval [r1,s1], r1=x0<x1<x2<.<xj=s1 and for each Θj[xj1,xj],j=1,2.n, we have limnE[(j=1nX(Θj)Δ(xjxj1)Y)2]=0.

Then, we can write Y(.)=r1s1X(y.)dy(a.e.).

Definition 4.

(Nikodem Citation1980). Let (Ω,A,P) be a probability space and KR be an interval. Then X:K×ΩR is said to be convex stochastic process if X(ϱu+(1ϱ)v.)ϱX(u.)+(1ϱ)X(v.)(a.e.) u,vK,ϱ[0,1].

Definition 5.

(Set, Sari̇kaya, and Tomar Citation2015). Let us consider a bidimensional interval Λ=Λ1×Λ2 in R2. Then X:Λ×ΩR is said to be convex stochastic process on Λ if X((ϱu+(1ϱ)w,ϱv+(1ϱ)z).)ϱX((u,v).)+(1ϱ)X((w,z).))(a.e.)for all (u,v),(w,z)Λandϱ[0,1].

Definition 6.

(Set, Sari̇kaya, and Tomar Citation2015). A stochastic process X:Λ×ΩR is said to be convex on coordinates on Λ if the partial mappings Xy:Λ1×ΩR,Xy(u.)=X((u,y).) and Xx:Λ2×ΩR,Xx(v.)=X((x,v).) are convex for all xΛ1,yΛ2.

Definition 7.

(Jung et al. 2021). A stochastic process X:K×ΩR is said to be η-convex with respect to η:X(K)×X(K)R if X(ϱu+(1ϱ)v.)X(v.)+ϱη(X(u.),X(v.))(a.e.) u,vK,ϱ[0,1].

Remark 1.

If η(X(u.),X(v.))=X(u.)X(v.), then η-convex stochastic process reduces to the definition of convex stochastic process.

Theorem 1.

(Jung et al. 2021). Suppose that X:[r1,s1]×ΩR is an η-convex stochastic process such that η is bounded above X([r1,s1].)×X([r1,s1].), then (1) X(r1+s12.)12Mη1s1r1r1s1X(x.)dx X(r1.)+X(s1.)2+14[η(X(r1.),X(s1.))+η(X(s1.),X(r1.))] X(r1.)+X(s1.)2+12Mη,(1) where Mη is an upper bound of η.

Proposition 1.

Any η-convex stochastic process X:[r1,s1]×ΩR with respect to a bifuction η bounded from above on X([r1,s1].)×X([r1,s1].) has lower and upper bounds.

Proof.

Suppose that Mη is upper bound of η on X([r1,s1].)×X([r1,s1].). For any x=ϱr1+(1ϱ)s1[r1,s1] and ϱ[0,1], we have X(x.)=X(ϱr1+(1ϱ)s1.)X(s1.)+ϱη(X(r1.),X(s1.))max{X(s1.),X(s1.)+η(X(r1.),X(s1.))}max{X(s1.),X(s1.)+Mη}.

Put M=max{X(s1.),X(s1.)+Mη}, we get X(x.)M.

Therefore, X has upper bound. For lower bound of X, consider an arbitrary point in the form r1+s12ε[r1,s1]. Then X(r1+s12.)=X((r1+s14+ε2+r1+s14ε2).)=X(12(r1+s12+ε)+12(r1+s12ε).)X(r1+s12ε,.)+12η(X(r1+s12+ε,.),X(r1+s12ε,.))X(r1+s12ε.)+Mη2.

This implies X(r1+s12.)Mη2X(r1+s12ε.).

On putting m=X(r1+s12.)Mη2, we see that X has a lower bound.

Thus the statement is proved. □

3 Generalized η-convex stochastic processes

First, we give the definition of η-convex stochastic process defined on a rectangle. Throughout this section, let us consider the bi-dimensional interval Δ=[r1,s1] × [r2,s2] in R2 with r1 < s1 and r2<s2.

Definition 8.

A stochastic process X:Δ×ΩR is said to be η-convex with respect to η:X(Δ)×X(Δ)R if the following inequality holds almost everywhere: X((ϱu+(1ϱ)w,ϱv+(1ϱ)z).)X((w,z).)+ϱη(X((u,v).),X((w,z).))for all (u,v),(w,z)Δandϱ[0,1].

Remark 2.

If η(X((u,v).),X((w,z).))=X((u,v).)X((w,z).) in Definition 8, then X becomes convex stochastic process on Δ.

Example 1.

Let X:Δ×ΩR, Δ=[0,)×[0,) be a stochastic process defined as X((x,y).)=1+x+y and η:X(Δ.)×X(Δ.)R, η(X((x,y).),X((x,y).))=X((x,y).)+X((x,y).). Then X is η-convex stochastic process on Δ.

Now, we present the definition of (η1,η2)-convex stochastic processes on coordinates.

Definition 9.

A stochastic process X:Δ×ΩR is said to be (η1,η2)-convex on coordinates on Δ if the partial mappings Xy:[r1,s1]×ΩR,Xy(u.)=X((u,y).) and Xx:[r2,s2]×ΩR,Xx(v.)=X((x,v).) are η1- and η2-convex stochastic process, respectiviely, for all x[r1,s1],y[r2,s2].

Remark 3.

If η1=η2=η, then X is called η-convex stochastic process on coordinates.

We give a formal definition of coordinated η-convex stochastic processes as follows:

Definition 10.

A stochastic process X:Δ×ΩR is said to be coordinated η-convex on Δ if for all (u,v),(w,z)Δandϱ,κ[0,1], we have X((ϱu+(1ϱ)w,κv+(1κ)z).)X((u,v).)+ϱ(1κ)η(X((u,z).),X((u,v).))+κ(1ϱ)η(X((w,v).),X((u,v).))+(1ϱ)(1κ)η(X((w,z).),X((u,v).))(a.e).

Example 2.

Let X:Δ×ΩR, Δ=[0,)×[0,) be a stochastic process defined as X((x,y).)=xy and η:X(Δ.)×X(Δ.)R, η(X((x,y).),X((x,y).))=2X((x,y).)X((x,y).). Then X is coordinated η-convex stochastic process on Δ.

Remark 4.

If we put η(X((x,y).),X((x,y).))=X((x,y).)X((x,y).) for all (x,y),(x,y)Δ in Definition 10, then X becomes coordinated convex stochastic processes (Set, Sari̇kaya, and Tomar Citation2015).

Theorem 2.

Every η-convex stochastic process X:Δ×ΩR is η-convex on the coordinates on Δ.

Proof.

Let (x,y),(u,v),(w,z)[r1,s1]×[r2,s2]. Then from the definition of η-convex stochastic process on [r1,s1]×[r2,s2] we have (2) Xx((ϱv+(1ϱ)z).)=X((x,ϱv+(1ϱ)z).)=X((ϱx+(1ϱ)x,ϱv+(1ϱ)z).)X((x,z).)+ϱη(X((x,v).),X((x,z).))=Xx(z.)+ϱη(Xx(v.),Xx(z.)).(2)

Inequality Equation(2) shows that Xx is η-convex stochastic process on interval [r2,s2]. (3) Xy((ϱu+(1ϱ)w).)=X((y,ϱu+(1ϱ)w).)=X((ϱy+(1ϱ)y,ϱu+(1ϱ)w).)X((y,w).)+ϱη(X((y,u).),X((y,w).))=Xy(w.)+ϱη(Xy(u.),Xy(w.)).(3)

Inequality Equation(3) shows that Xy is η-convex stochastic process on interval [r1,s1].

Thus, X is η-convex stochastic process on the coordinates on Δ. □

Next we derive H-H-type inequality for (η1,η2)-convex stochastic processes on the coordinates.

Theorem 3.

Let X:Δ×ΩR be a (η1,η2)-convex stochastic process on the coordinates and mean square integrable on Δ. Then, we have almost everywhere: X((r1+s12,r2+s22).)Mη1+Mη2212[1s1r1r1s1X((x,r2+s22).)dx+1s2r2r2s2X((r1+s12,y).)dy] Mη1+Mη241(s1r1)(s2r2)r1s1r2s2X((x,y).)dydx14[1(s1r1)r1s1[X((x,r2).)+X((x,s2).)]dx +1s2r2r2s2[X((r1,y).)+X((s1,y).)]dy+Mη1+Mη2414[X((r1,r2).)+X((s1,r2).)+X((r1,s2).)+X((s1,s2).)]+Mη1+Mη22,where Mη1 and Mη2 are upper bounds of η1 and η2, respectively.

Proof.

Since stochastic process X:Δ×ΩR is (η1,η2)-convex on the coordinates on Δ. Therefore, stochastic process Xx:[r2,s2]×ΩR,Xx(v.)=X((x,v).) is η2-convex on [r2,s2]. It follows from Theorem 1 that Xx(r2+s22.)12Mη21s2r2r2s2Xx(y.)dy12[Xx(r2.)+Xx(s2.)]+12Mη2.

This implies (4) X((x,r2+s22).)12Mη21s2r2r2s2X((x,y).)dy12[X((x,r2).)+X((x,s2).)]+12Mη2.(4)

On integrating Equation(4) with respect to x over [r1,s1], we get (5) 1s1r1r1s1X((x,r2+s22).)dx12Mη21(s1r1)(s2r2)r1s1r2s2X((x,y).)dydx12(s1r1)r1s1[X((x,r2).)+X((x,s2).)]dx+12Mη2. (5)

Similarly, we can get the following inequality for Xy(u.)=X((u,y).). (6) 1s2r2r2s2X((r1+s12,y).)dy12Mη11(s1r1)(s2r2)r1s1r2s2X((x,y).)dydx12(s2r2)r2s2[X((r1,y).)+X((s1,y).)]dy+12Mη1.(6)

Adding Equation(5) and Equation(6), we have (7) 1s1r1r1s1X((x,r2+s22).)dx+1s2r2r2s2X((r1+s12,y).)dy Mη1+Mη222(s1r1)(s2r2)r1s1r2s2X((x,y).)dydx12(s1r1)r1s1[X((x,r2).)+X((x,s2).)]dx +12(s2r2)r2s2[X((r1,y).)+X((s1,y).)]dy+Mη1+Mη22.(7)

Now, using the (η1,η2)-convexity of X on the coordinates on [r1,s1]×[r2,s2] and Theorem 1, we get (8) X((r1+s12,r2+s22).)12Mη11s1r1r1s1X((x,r2+s22).)dx(8) and (9) X((r1+s12,r2+s22).)12Mη21s2r2r2s2X((r1+s12),y).)dy.(9)

Adding Equation(8) and Equation(9), we find (10) X((r1+s12,r2+s22).)Mη1+Mη2212[1s1r1r1s1X((x,r2+s22).)dx+1s2r2r2s2X((r1+s12),y).)dy] Mη1+Mη24.(10)

Again from Theorem 1, we obtain (11) 1s1r1r1s1X((x,r2).)dx12[X((r1,r2).)+X((s1,r2).)]+Mη12(11) (12) 1s1r1r1s1X((x,s2).)dx12[X((r1,s2).)+X((s1,s2).)]+Mη12(12) (13) 1s2r2r2s2X((r1,y).)dy12[X((r1,r2).)+X((r1,s2).)]+Mη22(13) (14) 1s2r2r2s2X((s1,y).)dy12[X((s1,r2).)+X((s1,s2).)]+Mη22(14)

Adding Equation(11), Equation(12), Equation(13), and Equation(14), we have (15) 14(s1r1)r1s1[X((x,r2).)+X((x,s2).)]dx +14(s2r2)r2s2[X((r1,y).)+X((s1,y).)]dy14[X((r1,r2).)+X((s1,r2).)+X((r1,s2).)+X((s1,s2).)]+Mη1+Mη24. (15)

Adding Mη1+Mη24 on both sides of Equation(15), we get (16) 14[1(s1r1)r1s1[X((x,r2).)+X((x,s2).)]dx+1(s2r2)r2s2[X((r1,y).)+X((s1,y).)]dy]+Mη1+Mη2414[X((r1,r2).)+X((s1,r2).)+X((r1,s2).)+X((s1,s2).)]+Mη1+Mη22.(16)

From Equation(7), Equation(10), and Equation(16), we obtain the desired result. □

Remark 5.

If we take η1(X(x.),X(y.))=X(x.)X(y.) and η2(X(x.),X(y.))=X(x.)X(y.) for all (x,y),(x,y)[r1,s1]×[r2,s2] in Theorem 3, then we obtain H-H-type inequality for convex stochastic processes on the coordinates (Set, Sari̇kaya, and Tomar Citation2015).

Now we prove H-H-Fejér-type inequalities for coordinated η-convex stochastic processes.

Theorem 4.

Let X:Δ×ΩR be a coordinated η-convex stochasitc process on Δ such that X is mean square integrable. If a stochastic process Y:Δ×ΩR is non negative, mean–square integrable and symmetric with respect to r1+s12 and r2+s22 on coordinates. Then, we have almost everywhere: X((r1+s12,r2+s22).)r1s1r2s2Y((x,y).)dydx14r1s1r2s2[η(X((x,r2+s2y).),X((x,y).)) +η(X((r1+s1x,y).),X((x,y).)) +η(X((r1+s1x,r2+s2y).),X((x,y).))]Y((x,y).)dydxr1s1r2s2X((x,y).)Y((x,y).)dydx[X((r1,r2).)+14{η(X((r1,s2).),X((r1,r2).))+η(X((s1,r2).),X((r1,r2).)) +η(X((s1,s2).),X((r1,r2).))}]r1s1r2s2Y((x,y).)dydx.

Proof.

Since X is a coordinated η-convex stochastic process on Δ, then for all (ϱ,κ)[0,1]×[0,1], we can write (17) X((r1+s12,r2+s22).)=X((ϱr1+(1ϱ)s1+(1ϱ)r1+ϱs12,κr2+(1κ)s2+(1κ)r2+κs22).)X((ϱr1+(1ϱ)s1,κr2+(1κ)s2).)+14[η(X((ϱr1+(1ϱ)s1,(1κ)r2+κs2).),X((ϱr1+(1ϱ)s1,κr2+(1κ)s2).))+η(X((1ϱ)r1+ϱs1,κr2+(1κ)s2).),X((ϱr1+(1ϱ)s1,κr2+(1κ)s2).))+η(X((1ϱ)r1+ϱs1,(1κ)r2+κs2).),((X(ϱr1+(1ϱ)s1,κr2+(1κ)s2).))].(17)

Multiplying both sides of Equation(17) by Y((ϱr1+(1ϱ)s1,κr2+(1κ)s2).) and integrating the resultant with respect to (ϱ,κ) on [0,1]×[0,1], we get (18) X((r1+s12,r2+s22).)0101Y((ϱr1+(1ϱ)s1,κr2+(1κ)s2).)dϱdκ0101[X((ϱr1+(1ϱ)s1,κr2+(1κ)s2).)+14{η(X((ϱr1+(1ϱ)s1,(1κ)r2+κs2).),X((ϱr1+(1ϱ)s1,κr2+(1κ)s2).))+η(X((1ϱ)r1+ϱs1,κr2+(1κ)s2).),X((ϱr1+(1ϱ)s1,κr2+(1κ)s2).))+η(X((1ϱ)r1+ϱs1,(1κ)r2+κs2).),X((ϱr1+(1ϱ)s1,κr2+(1κ)s2).))}]×Y((ϱr1+(1ϱ)s1,κr2+(1κ)s2).)dϱdκ.(18)

Substituting x=ϱr1+(1ϱ)s1,y=κr2+(1κ)s2 in Equation(3), then (19) X((r1+s12,r2+s22).)r1s1r2s2Y((x,y).)dydxr1s1r2s2X(x,y).)Y((x,y).)dydx+14[r1s1r2s2η(X((x,r2+s2y).),X((x,y).))Y((x,y).)dydx+r1s1r2s2η(X((r1+s1x,y).),X((x,y).))Y((x,y).)dydx+r1s1r2s2η(X((r1+s1x,r2+s2y).),X((x,y).))Y((x,y).)dydx].(19)

Since X is η-convex stochastic process on coordinates on [r1,s1]×[r2,s2], then for all (ϱ,κ), we have (20) X((ϱr1+(1ϱ)s1,κr2+(1κ)s2).))+X((ϱr1+(1ϱ)s1,(1κ)r2+κs2).))+X((1ϱ)r1+ϱs1,(1κ)r2+κs2).))+X((1ϱ)r1+ϱs1,κr2+(1κ)s2).))4X((r1,r2).)+η(X((r1,s2).),X((r1,r2).))+η(X((s1,r2).),X((r1,r2).))+η(X((s1,s2).),X((r1,r2).)).(20)

Multiplying inequality Equation(20) by Y((ϱr1+(1ϱ)s1,κr2+(1κ)s2).) and integrating the resultant with respect to (ϱ,κ) on [0,1]×[0,1], we get 0101[X((ϱr1+(1ϱ)s1,κr2+(1κ)s2).)+X((ϱr1+(1ϱ)s1,(1κ)r2+κs2).)+X((1ϱ)r1+ϱs1,(1κ)r2+κs2).)+X((1ϱ)r1+ϱs1,κr2+(1κ)s2).)]×Y((ϱr1+(1ϱ)s1,κr2+(1κ)s2).)dϱdκ[4X((r1,r2).)+η(X((r1,s2).),X((r1,r2).))+η(X((s1,r2).),X((r1,r2).))+η(X((s1,s2).),X((r1,r2).))]×0101Y((ϱr1+(1ϱ)s1,κr2+(1κ)s2).)dϱdκ.

Using the change of variable and the fact that Y is symmetric with respect to r1+s12 and r2+s22, we have (21) r1s1r2s2X((x,y).))Y((x,y).)dydx[X((r1,r2).)+14{η(X((r1,s2).),X((r1,r2).))+η(X((s1,r2).),X((r1,r2).))+η(X((s1,s2).),X((r1,r2).))}]r1s1r2s2Y((x,y).)dydx.(21)

From Equation(19) and Equation(21), we get the desired result.□

Corollary 1.

If we take η(X((x,y).),X((x,y).))=X((x,y).)X((x,y).) for all (x,y),(x,y)[r1,s1]×[r2,s2] in above theorem, then we obtain H-H-Fejér-type inequality for coordinated convex stochastic process as follows: X((r1+s12,r2+s22).)r1s1r2s2Y((x,y).)dydxr1s1r2s2X((x,y).)Y((x,y).)dydx14[X((r1,r2).)+X((r1,s2).)+X((s1,r2).)+X((s1,s2).)] ×r1s1r2s2Y((x,y).)dydx(a.e.).

4 Conclusion

In this article, we have defined (η1,η2)-convex stochastic process on the coordinates which is the generalization of convex stochastic process on coordinates. We have proved H-H inequality for this convex stochastic process. We have also showed that every η-convex stochastic process on Δ is η-convex on the coordinates. Further, we have established H-H-Fejér inequality for coordinated η-convex stochastic process. In the similar way, readers can generalize the concept of other type of stochastic convexity on coordinates.

Funding

Ministry of Science and Technology, Department of Science and Technology, New Delhi, India.;

Additional information

Funding

The first author is financially supported by the Ministry of Science and Technology, Department of Science and Technology, New Delhi, India, through Registration No. DST/INSPIRE Fellowship/[IF190355]. Open Access funding provided by the Qatar National Library.

References

  • Allen, L. J. 2010. An introduction to stochastic processes with applications to biology. New York: CRC Press.
  • Alomari, M, and M. Darus. 2009. On the Hadamard’s inequality for log-convex functions on the coordinates. Journal of Inequalities and Applications 1–13:283147. doi: 10.1155/2009/283147.
  • Barráez, D., L. González, N. Merentes, and A. Moros. 2015. On h-convex stochastic processes. Mathematica Aeterna 5 (4):571–81.
  • Bhattacharya, R. N., and E. C. Waymire. 2009. Stochastic processes with applications. Philadelphia: SIAM.
  • Fu, H., M. S. Saleem, W. Nazeer, M. Ghafoor, and P. Li. 2021. On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes. AIMS Mathematics 6 (6):6322–39. doi: 10.3934/math.2021371.
  • Gordji, M. E., M. R. Delavar, and S. Dragomir. 2015. Some inequalities related to η-convex functions. Preprint Rgmia Res. Rep. Coll 18:1–14.
  • Gordji, M. E., M. R. Delavar, and M. D. L. Sen. 2016. On ϕ-convex functions. Journal of Mathematical Inequalities 10 (1):173–183.
  • Jung, C. Y., M. S. Saleem, S. Bilal, W. Nazeer, and M. Ghafoor. 2020. Some properties of η-convex stochastic processes. AIMS Mathematics 6 (1):726–36. doi: 10.3934/math.2021044.
  • Karahan, V., O. Nurgül, and İ İscan. 2018. Hermite-Hadamard type inequalities for convex stochastic processes on n-coordinates. Turkish Journal of Mathematics and Computer Science 10:256–62.
  • Kotrys, D. 2012. Hermite–Hadamard inequality for convex stochastic processes. Aequationes Mathematicae 83 (1-2):143–51. doi: 10.1007/s00010-011-0090-1.
  • Kotrys, D. 2015. Remarks on jensen, Hermite-Hadamard and Fejér inequalities for strongly convex stochastic processes. Mathematica Aeterna 5 (1):104.
  • Maden, S., M. Tomar, and E. Set. 2015. Hermite-Hadamard type inequalities for s-convex stochastic processes in first sense. Pure and Applied Mathematics Letters 2015:1–7.
  • Nikodem, K. 1980. On convex stochastic processes. Aequationes Mathematicae 20 (1):184–97. doi: 10.1007/BF02190513.
  • Okur, N, and R. Aliyev. 2021. Some Hermite–Hadamard type integral inequalities for multidimensional general preinvex stochastic processes. Communications in Statistics- Theory and Methods 50 (14):3338–51. doi: 10.1080/03610926.2019.1696976.
  • Okur, N., I. Iscan, and Y. Usta. 2018. Some integral inequalities for harmonically convex stochastic processes on the coordinates. Advanced Mathematical Models & Applications 3 (1):63–75.
  • Set, E., M. Z. Sari̇Kaya, and M. Tomar. 2015. Hermite-Hadamard type inequalities for coordinates convex stochastic processes. Mathematica Aeterna 5 (2):363–82.
  • Set, E., M. Tomar, and S. Maden. 2014. Hermite-Hadamard Type Inequalities for s-Convex Stochastic Processes in the Second Sense. Turkish Journal of Analysis and Number Theory 2 (6):202–7. doi: 10.12691/tjant-2-6-3.
  • Sharma, N., J. Bisht, and S. K. Mishra. 2020. Hermite-Hadamard type inequalities for functions whose derivatives are strongly η-convex via fractional integrals, 83–102. Optimization, Variational Analysis and Applications, Springer.
  • Sharma, N., J. Bisht, S. K. Mishra, and A. Hamdi. 2019. Some majorization integral inequalities for functions defined on rectangles via strong convexity. Journal of Inequalities & Special Functions 10 (4).
  • Sharma, N., R. Mishra, and A. Hamdi. 2022. Hermite-Hadamard type integral inequalities for multidimensional general h-harmonic preinvex stochastic processes. Communications in Statistics- Theory and Methods 51 (19):6719–40. doi: 10.1080/03610926.2020.1865403.
  • Sharma, N., R. Mishra, and A. Hamdi. 2022. On strongly generalized convex stochastic processes. Communications in Statistics-Theory and Methods 2022:1–16. doi: 10.1080/03610926.2022.2150055.
  • Skowroński, A. 1992. On some properties ofJ-convex stochastic processes. Aequationes Mathematicae 44 (2-3):249–58. doi: 10.1007/BF01830983.
  • Skowroński, A. 1995. On wright-convex stochastic processes. Annales Mathematicae Silesianae 9:29–32.
  • Sobczyk, K. 2001. Stochastic differential equations: with applications to physics and engineering, vol 40. Netherlands: Springer Science & Business Media.
  • Yaldi̇Z, H., M. Z. Sari̇Kaya, and Z. Dahmani. 2017. On the Hermite-Hadamard-Fejer-type inequalities for co-ordinated convex functions via fractional integrals. An International Journal of Optimization and Control: Theories & Applications (IJOCTA) 7 (2):205–15. doi: 10.11121/ijocta.01.2017.00405.
  • Ullah, S., M. Khan, and Y.-M. Chu. 2019. A note on generalized convex functions. Journal of Inequalities and Applications 2019 (1):1–10.