57
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Minimum, maximum, and average spherical prediction variances for central composite and box-behnken designs

Pages 2581-2600 | Received 01 May 1995, Published online: 27 Jun 2007
 

Abstract

Single value design optimality criteria are often considered when selecting a response surface design. An alternative to a single value criterion is to evaluate prediction variance properties throughout the experimental region and to graphically display the results in a variance dispersion graph (VDG) (Giovannitti-Jensen and Myers (1989)). Three properties of interest are the spherical average, maximum, and minimum prediction variances. Currently, a computer-intensive optimization algorithm is utilized to evaluate these prediction variance properties. It will be shown that the average, maximum, and minimum spherical prediction variances for central composite designs and Box-Behnken designs can be derived analytically. These three prediction variances can be expressed as functions of the radius and the design parameters. These functions provide exact spherical prediction variance values eliminating the implementation of extensive computing involving algorithms which do not guarantee convergence. This research is concerned with the theoretical development of these analytical forms. Results are presented for hyperspherical and hypercuboidal regions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.