138
Views
57
CrossRef citations to date
0
Altmetric
Original Articles

Bayesian model averaging and model selection for markov equivalence classes of acyclic digraphs

, , &
Pages 2493-2519 | Published online: 27 Jun 2007
 

Abstract

Acyclic digraphs (ADGs) are widely used to describe dependences among variables in multivariate distributions. In particular, the likelihood functions of ADG models admit convenient recursive factorizations that often allow explicit maximum likelihood estimates and that are well suited to building Bayesian networks for expert systems. There may, however, be many ADGs that determine the same dependence (= Markov) model. Thus, the family of all ADGs with a given set of vertices is naturally partitioned into Markov-equivalence classes, each class being associated with a unique statistical model. Statistical procedures, such as model selection or model averaging, that fail to take into account these equivalence classes, may incur substantial computational or other inefficiencies. Recent results have shown that each Markov-equivalence class is uniquely determined by a single chain graph, the essential graph, that is itself Markov-equivalent simultaneously to all ADGs in the equivalence class. Here we propose two stochastic Bayesian model averaging and selection algorithms for essential graphs and apply them to the analysis of three discrete-variable data sets.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.