242
Views
18
CrossRef citations to date
0
Altmetric
Original Article

Quantification of compaction-induced crystallinity reduction of a pharmaceutical solid using 19F solid-state NMR and powder X-ray diffraction

, , , &
Pages 969-975 | Received 21 Jul 2008, Accepted 05 Jan 2009, Published online: 19 May 2009
 

Abstract

19F solid-state nuclear magnetic resonance (NMR) was investigated as an analytical technique to quantify the amorphous phase in a fluorine-containing pharmaceutical candidate. The crystallinity of Compound 1 was calculated using two 19F T1 relaxation-based methods. The first method employs both the pure amorphous and the crystalline reference standards while the second method is model independent and utilizes a single standard. The 19F solid-state NMR results were confirmed with powder X-ray diffraction methods. From X-ray diffraction data, two linear calibration curves were obtained from blends of crystalline and amorphous Compound 1: one is based on the total integrated intensity of selected diffraction peaks and the other on the total intensity of the amorphous halo at 2θ positions that have no interference from crystalline diffraction peaks. The crystallinity of Compound 1 after compaction calculated by both 19F solid-state NMR methods was in excellent agreement with the results from the X-ray calibration curves. 19F solid-state NMR was shown to be a powerful technique in determining the amount of amorphous phase present in a pharmaceutical solid.

Acknowledgments

We thank Yong Xie for providing the compacted tablets as well as useful discussion. We are grateful to Drs Shawn Walker and Margaret Faul for providing the active pharmaceutical ingredient. The support from the Amgen Small Molecule Pharmaceutical R&D Department is greatly appreciated.

Declaration of interest: The authors report no conflicts of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.